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1 Definition and Concepts 

Land degradation is the reduction or loss of the biological or economic productivity and complexity 

of rainfed cropland, irrigated cropland, or range, pasture, forest and woodlands resulting from land 

uses or from a process or combination of processes arising from human activities.  

Land cover has been defined by the UN Food and Agriculture Organisation (FAO) as the “observed 

(bio) physical cover of the earth’s surface” (Latham et al. 2014). To some extent land cover is one of 

the most easily detectable properties of the earth’s surface and has been used as an important 

indicator of change, both human induced and natural. However, at the fine scale, land cover can be 

a complex arrangement of different vegetation and abiotic components. For example a given land 

unit may include vegetation with a soil substrate. The vegetation may include a community of woody 

and non-woody species arranged in a complex structure both horizontally and vertically. Land cover 

is the description of these components in a way that has meaning at the spatial unit of interest and 

in the thematic context being considered. Thus, land cover is categorised in different ways 

depending on the application.   

Land productivity is the biological productive capacity of the land, the source of all the food, fibre 

and fuel that sustains humans.  Land productivity points to long-term changes in the health and 

productive capacity of the land and reflects the net effects of changes in ecosystem functioning on 

plant and biomass growth (UNSTATS 2016). 

Carbon stock is the quantity of carbon in a pool (i.e. a system which has the capacity to accumulate 

or release carbon). Ecosystem carbon pools, as defined in IPCC (2003, Table 3.1.2), are biomass 

(aboveground biomass and belowground biomass), dead organic matter (dead wood and litter, 

above and below ground), and soil (soil organic matter).  

Total carbon stock is the quantity of carbon in all of the ecosystem carbon pools i.e. aboveground 

biomass, belowground biomass, dead wood, litter and soil.  

Aboveground biomass is all biomass of living vegetation, both woody and herbaceous, above the 

soil including stems, stumps, branches, bark, seeds, and foliage. 

Belowground biomass is all biomass of live roots. Fine roots of less than (suggested) 2 mm diameter 

are often excluded because these often cannot be distinguished empirically from soil organic matter 

or litter. 

Litter is all non-living biomass with a size greater than the limit for soil organic matter (suggested 2 

mm) and less than the minimum diameter chosen for dead wood (e.g. 10 cm), lying dead, in various 

states of decomposition above or within the mineral or organic soil. This includes the litter layer as 

usually defined in soil typologies. Live fine roots above the mineral or organic soil (of less than the 

minimum diameter limit chosen for below-ground biomass) are included in litter where they cannot 

be distinguished from it empirically. 

Dead wood is all non-living woody biomass not contained in the litter, either standing, lying on the 

ground, or in the soil. Dead wood includes wood lying on the surface, dead roots, and stumps, larger 

than or equal to 10 cm in diameter (or the diameter specified by the country). 

Soil organic matter includes organic carbon in mineral and organic soils (including peat) to a 

specified depth chosen by the country and applied consistently through the time series. Live fine 
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roots (of less than the suggested diameter limit for below-ground biomass) are included with soil 

organic matter where they cannot be distinguished from it empirically (IPCC 2003).  

Soil organic carbon (SOC) is the amount of carbon stored in soil and is a component of soil organic 

matter. 

Soil organic carbon stock is the mass of soil organic carbon per unit area for a reference depth. The 

reporting standard is SOC stock in tonnes of organic C per hectare to a depth of 0-30 cm (IPCC, 

1997). Determination of soil organic C stock requires measurements of soil organic C concentration, 

soil bulk density and gravel content: 

���	����	 
 ���� � 	 � �1 � �
���� � �    (1) 

Where: SOCm is the mass of organic carbon in the soil (%), 	is the soil bulk density (g cm
-3

), �	is the 

gravel content (g g
-1

), and �	is the thickness of the layer (cm). 

Note: Quantifying SOC stock at fixed depths as the product of soil bulk density, depth and organic 

carbon concentration, provides a simple approach for reporting change in SOC stock. However, in 

the context of land use/management change, this method can systematically overestimate SOC 

stocks where bulk densities have increased (e.g. under changes from full to minimum tillage in 

croplands). Where bulk densities differ between managements or over time periods, more accurate 

estimates of SOC stock can be derived based on quantification in equivalent soil masses (ESMs; see 

Wendt and Hauser, 2013). This ESM approach is gaining uptake; for example, the approach is being 

recommended and used in the Australian soil carbon method under the Emissions Reduction Fund 

(DotE 2014a, Australian Government 2014).   

Indicators are variables that reflect a process of interest.  

Metrics are measures that are used to quantify or assess indicators/sub-indicators. 

Monitoring will be based on evaluating the significant changes in the sub-indicator via the 

associated metric.  

Baseline (SOCt0) carbon stocks are required to enable an assessment of the initial status of the sub-

indicator in absolute terms. January 2016 is considered the nominal start date for setting the 

baseline for the 15.3 target. Specifically, this means that it is good practice to determine the baseline 

for carbon stocks in the SOC pool prior to the 1
st

 of January 2016. This start date is referred to as t0 

and future reporting is referred to as t1,…,tn. The baseline should be quantified over an extended 

period prior to t0, rather than using the values of a single year to take account of climatic variation. 

We recommend the baseline period should be 10-15 years. This agrees with recommendations for 

monitoring progress towards the Land Degradation Neutrality target (Orr et al. 2017) and is 

comparable to the historical periods used for REDD+ Forest Reference Emission Levels.  

Monitoring Period (tn) is the time period over which the metric is measured (yr). The 15.3 target 

date (specified as 2030) is referred to as t1. The metric should be quantified for the monitoring 

period using the same methods employed for the baseline period. Potential intermediate monitoring 

points have been suggested on an interval of 4 years
 
for land degradation neutrality

 
(Orr et al 2017), 

noting that for land cover, available data sets cover epochs of five years. In the context of SOC 

change, this frequency is likely to be too short to detect change where an on-ground monitoring 

approach is used. Even in landscapes where soil carbon is changing, the minimum period for reliable 
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detection will rarely be less than 10 years (e.g. Smith 2004); the obvious case being when land 

clearing occurs. Thus although methods may allow for calculation of SOC stock change at shorter 

intervals, the results are unlikely to be meaningful in the context of assessing degradation. 

Change in carbon stocks, is defined as the change in C stocks between the monitoring period (tn) and 

the baseline (t0), in the units of t C ha
-1

. 

False positive refers to a case where carbon stocks have increased for a land use transition that is 

actually considered land degradation, such as woody encroachment (i.e., land cover change from 

grassland to shrubland). Assessment of this type of exception (i.e., “false positive”) requires 

knowledge and interpretation at the local level (see Section 4.4).  

Spatial feature refers to the spatial unit (e.g. watershed, polygon) at which degradation is reported 

on and may be a uniform land cover class or a mix of land cover classes. 
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2 Introduction 

Carbon stocks reflect the integration of multiple processes affecting plant growth and the gains and 

losses from terrestrial organic matter pools. They are elementary to a wide range of ecosystem 

services and their levels and dynamics are reflective of land use and management practices. The aim 

of this Annex is to provide good practice guidance on methods for estimating the sub-indicator 

change in carbon stocks above and below ground in the context of assessing SDG indicator 15.3.1 

“the proportion of land that is degraded over the total land area”. As outlined in Decision 

22/COP.11
1
, soil organic carbon stock is the metric that will be used to assess carbon stocks above 

and below ground, and once operational, this metric will be replaced by total terrestrial system 

carbon stock. Therefore the main focus of this document is to provide approaches for estimating 

change in SOC stocks. Some guidance on approaches for estimating change in carbon stocks in other 

pools, particularly aboveground biomass, is also provided.  

The methods outlined draw on global and regional datasets, whilst encouraging the use of national 

and sub-national information to estimate SOC stock change. The methods describe how to:  

1. Set the baseline to determine the initial status of SOC stocks; 

2. Detect change in SOC stocks, including validation/evaluation of results in the context of 

national circumstances; and 

3. Derive the status of the carbon stocks sub-indicator by determining if there has been an 

increase, decrease or no change in SOC over the monitored period. 

The choice of method used by a country to make these estimates will largely depend on the 

availability of data and analytical capability. Guidance is provided on global default approaches and 

national approaches, including on-ground monitoring. 

Many of the processes affecting soil organic matter over the past century have been dominated by 

human management of vegetation (ITPS 2015). Changes in vegetation cover, including those in 

response to climate and to land use or management, influence SOC stocks by altering the rates, 

quality and location of plant litter inputs to soils. The default approach described here for estimating 

SOC stock is therefore strongly reliant on activity data from sub-indicator 1 – Land cover change 

(Annex 1). However, although change in SOC stocks is estimated based on known changes associated 

with changed land use and/or management, it is possible to obtain a different status of change 

(positive, negative, no change) to that of sub-indicator 1. This is because the status of a particular 

land cover change is a national decision for sub-indicator 1, with countries generating a land cover 

class transition matrix that identifies the processes (flows) that cause transition between land cover 

classes (Annex 1), but is derived from established relationships with SOC stocks for this sub-

indicator. 

3 Method of computation 

In this section we outline the steps required in estimating the metric, change in SOC stocks, and 

computation of the final sub-indicator. Broadly, the following steps are required: 

                                                             

1
 http://www.unccd.int/en/programmes/Science/Monitoring-Assessment/Documents/Decision22-COP11.pdf 
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1. Estimation of an average SOC stock (and 95% confidence interval) for each identified spatial 

feature for the baseline period.  

2. Estimation of an average SOC stock (and 95% confidence interval) for each identified spatial 

feature for the monitoring period.  

3. Comparison of SOC in the monitoring period with the average baseline SOC for the same 

spatial feature.  

4. Assessment of whether there has been an increase, decrease or no change in SOC for each 

identified spatial feature, and assignment of whether the area is degraded or not degraded.  

5. Identification and justification of potential “false positives” and explainable anomalies.  

The rationale and interpretation behind the methods, and a discussion of data sources are outlined 

in subsequent sections.   

3.1 Choice of  Method 

The three-tiered structure outlined by the IPCC (2006) for data and methods is a useful model to 

consider here. This includes three tiers of data from least to most detail. In the case of the SOC 

stocks metric, these tiers might include: 

1. Globally-available land cover classes and global defaults for reference SOC stocks, change 

factors and emission factors. 

2. Nationally-derived land cover classes and defaults for reference SOC stocks, change factors 

and emission factors specific to local conditions. 

3. National data based on the integration of ongoing ground-measurement programs, earth 

observation data and models. 

Factors such as the significance of the source/sink (proportional contribution to national inventory), 

available data, and analytical capability will determine selection of the tier. The IPCC recommends 

that it is good practice to use higher tiers for the measurement of significant sources/sinks. 

Progressing from Tier 1 to Tier 3 generally represents a reduction in the uncertainty of GHG 

estimates, though at a cost of an increase in the complexity of measurement processes and analyses. 

Lower Tier methods may be combined with higher Tiers for pools which are less significant. There is 

no need to progress through each Tier to reach Tier 3. In many circumstances it may be simpler and 

more cost-effective to transition from Tier 1 to 3 directly than produce a Tier 2 system that then 

needs to be replaced. Data collected for developing a Tier 3 system may be used to develop interim 

Tier 2 estimates. 

The default methodologies described below draw on the significant body of work of the 

Intergovernmental Panel on Climate Change (IPCC) which has published the methodological 

guidance that countries have agreed to use in estimating greenhouse gas inventories for reporting to 

the United Nations Framework Convention on Climate Change (UNFCCC). Of most relevance to the 

carbon stocks sub-indicator is the 2003 Good Practice Guidance for Land Use, Land-use Change and 

Forestry (IPCC 2003), the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006), 

which consolidates and updates previous guidance, and the 2013 Supplement to the 2006 IPCC 

Guidelines for National Greenhouse Gas Inventories: Wetlands (IPCC 2014), which fills gaps and 
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extends the 2006 Guidelines and updates emission/removal factors including on wetlands and 

drained soils. The IPCC will produce a Methodology Report by 2019 as a supplement (not full 

revision) to be used in conjunction with the 2006 IPCC Guidelines
2
.  

The maximum equilibrium carbon content for a soil at a given location is determined by 

environmental factors such as rainfall, evaporation, solar radiation and temperature. A lack of 

nutrients and a limited capacity to store and supply water in a soil can reduce this potential 

maximum, as can other constraints to plant growth (e.g. toxicities). Within these constraints, the 

actual amount of organic carbon contained in a soil will be determined by the balance between 

carbon inputs and losses, which are strongly influenced by land management and soil type. 

Agricultural practices that alter rates of carbon input (e.g. plant residues, compost, mulch) or loss 

(e.g. removal of crops, cultivation) change the stock of soil organic carbon.  

The IPCC defaults for SOC stocks use ‘strata’ based on factors such as land use and land 

management. While ‘land use’ refers essentially to the six IPCC categories (i.e. Forest Land, 

Cropland, Grassland, Wetlands, Settlements, Other Land), land management refers to stratification 

of the main land uses. For mineral soils, land management is a required level of stratification for 

consistency with IPCC factors for SOC stock change, while the defaults for reference stock, i.e. under 

native vegetation, are based on default climate regions and soil types (Note: default IPCC soil classes 

are defined in Volume 4 of the IPCC 2006 Guidelines, Annex 3A.5; IPCC default soil classes derived 

from the Harmonized World Soil Data Base are available at http://www.isric.org/data/ipcc-default-

soil-classes-derived-harmonized-world-soil-data-base-ver-11; see Section 5.1). However, it should be 

noted that for ‘higher tier’ methods, soil type may not be a useful stratification. For organic soils 

(with high organic content, see Section 3.4 for definition), IPCC default coefficients stratify the areas 

by climatic region. Here we use the term ‘homogeneous land cover unit’ instead of the IPCC term 

‘stratum’ to avoid confusion with land cover terminology. All land in a homogeneous land cover unit 

should have common biophysical conditions and management history over the time period to be 

treated together for analytical purposes. In the context of the calculations described below, a 

‘spatial feature’ is the spatial unit (e.g. watershed, polygon) at which degradation is reported on and 

is likely to be a mix of land cover classes, while a homogeneous land cover unit is a uniform land 

cover class (IPCC ‘stratum’) within a spatial feature.  

3.2 Estimating baseline SOC stocks 

Estimation of SOC in the baseline period (������	for a given spatial feature is based on a national-

level assessment of carbon stocks for the 10-15 year period preceding 1
st

 of January 2016. For land 

cover, global data sets are now available annually (e.g. European Space Agency’s Climate Change 

Initiative Land Cover (CCI-LC) dataset (see Annex 1). A historical averaging approach to minimise the 

effects of seasonal and inter-annual climate variability is the simplest option for estimating the 

baseline. The absolute numerical value of the metric for each spatial feature is quantified by 

averaging across an extended (10–15 year) period prior to t0, at annual or less frequent periods 

                                                             

2
 IPCC (2016). Report of IPCC Scoping Meeting for a Methodology Report(s) to refine the 2006 IPCC Guidelines 

for National Greenhouse Gas Inventories. Eds: Ngarize, S., Kranjc, A., Baasansuren, J., Shermanau, P. Report of 

the IPCC Scoping Meeting, Pub. IGES, Japan. Available at: http://www.ipcc-

nggip.iges.or.jp/public/mtdocs/pdfiles/1608_Minsk_Scoping_Meeting_Report.pdf 
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depending on data availability and resources. The issue of spatial disaggregation is discussed in 

Section 4.2. 

The availability of annual land cover products also allow extrapolation of a trend fitted to historical 

data. This approach requires confidence that the past trend is likely to be representative of the 

future, otherwise frequent updating is needed, and is appropriate if there is a clear trend in 

historical data (GFOI 2016). However, Orr et al. (2017) state that comparing trends is not useful or 

appropriate in the context of assessing land degradation neutrality. They argue that only comparing 

trends with trends (rather than an absolute numerical value vs. an absolute numerical value) could 

lead to an unintended outcome where, for example, the metric could have increased from a low 

start point in 2000–2010, increased significantly from 2010-2015, but then declined a little from 

2015–2030. The unintended outcome is that this would be labelled as declining when the magnitude 

of the change suggests otherwise. Thus only using the trend over the time period to assess 

degradation is not recommended. In section 3.8, we propose a hybrid approach of using the trend 

(or the direction of change) in the metric over the reporting period AND the magnitude of the 

relative change in carbon stocks between the baseline and the current estimate to assess 

degradation. 

Rather than relying than on spatial analysis alone, most assessments of soil organic carbon change 

involve the integration of multiple lines of evidence from diverse sources such as field experiments, 

paired sites, monitoring sites, scientific studies, and land management surveys (e.g. ITPS 2015; SoE 

2011). When deriving baseline estimates from ground-based measurements, the sampling design 

used must provide unbiased estimates of the mean SOC stock and the standard error of the mean 

(de Gruitjer et al. 2006; Chappell et al. 2013). Some examples of the types of data for SOC stock that 

could be used to inform a baseline are provided in Table 1.  

Table 1. Types of data that could be used to derive a SOC stocks baseline. 

Data type Typical scale 

Default values
1
 Global/regional/national 

Soil maps All scales 

Historical point data National/sub-national 

Spatial monitoring data
2
 National/sub-national 

Intensive monitoring data
3
 Sub-national 

Experimental data
3
 Sub-national 

Models
4
 Sub-national 

1
 for reference stocks and stock change factors for land use, management and climate units; 

2
 e.g. national grid; 

3 
from ground-based sampling using conventional or sensing methods; 

4
 calibrated/validated using ground measurements. 

The choice of method (as described for the three IPCC tiers above) for estimating change in SOC 

stocks by a country will largely depend on the current, and likely future, data availability and will 

have implications for determining the SOC baseline. Baselines could be derived in two main ways: 
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1. As estimates of total SOC stocks for the particular land use/management stratification; or 

2. As spatially-explicit baselines. 

For 1, estimates could be derived from the global default method or using a national approach. The 

global default approach, where either default values are applied to the land stratification data from 

Earth Observation to derive the baseline stocks (or reference stocks, IPCC 2006) as described in the 

calculations in Section 3.4, or a global product such as SoilGrids250m (Hengl et al. 2017) is used to 

derive the baseline stocks (see Section 5.1). However, it is likely that these estimates will be subject 

to large uncertainty. Alternatively, a national approach where countries either: i) use the same linear 

equations as the global default method in conjunction with country-specific factors to improve the 

accuracy of the relative change factors, reference SOC stocks, climate regions, soil types, and/or land 

management classification systems, or ii) use high-resolution maps to improve the accuracy of the 

reference SOC stocks (e.g. in Australia, the 90 m grid SOC stock baseline (Viscarra Rossel et al. 2014) 

could be used). This is likely to reduce uncertainty in the estimates, but the variability of SOC stock 

needs to be accurately quantified (see Section 5.2).  

For 2, when deriving a spatially-explicit baseline, the appropriate resolution would need to be 

defined. A spatiotemporal data-model assimilation approach that uses easily accessible Earth 

Observation data for the updating, but is underpinned by on-ground monitoring could be used (see 

Section 5.2).   

3.3 Estimating SOC stocks in the monitoring year 

Where a default approach is used, it is good practice to apply the same methods (equations) used 

for the estimation of baseline SOC stocks to estimate SOC stocks in the monitoring year. Where a 

national monitoring approach is used, it is good practice to use standardised spatial and temporal 

sampling for the estimation of both baseline SOC stocks and SOC stocks in the monitoring year (e.g. 

see de Gruitjer et al. 2006; Brus et al. 2014). This will enable consistent comparisons and assessment 

of whether SOC stocks are increasing, decreasing or remaining stable (i.e. no change). Application of 

the same equations for the monitoring time period (rather than the baseline period) will lead to 

estimates of SOC stock at the end of the monitoring period (������. 

3.4 Default approach 

Where country-specific data/capability are currently lacking, a default (‘Tier 1’) approach should be 

used. IPCC Tier 1 methods generally assume that the changes occur over 20 years and that land 

ceases to be in a conversion category 20 years after the conversion occurred. The influence of land 

use and management on SOC is very different in mineral versus organic soil types (for discussion, see 

Section 2.3.3, IPCC 2006). Therefore, separate guidance is provided for estimating carbon stock 

change in mineral soils and organic soils based on the IPCC good practice guidance and guidelines. 

Here we follow the definition of organic soils (Histosols) as provided in Annex 3A.5, Volume 4 of the 

IPCC 2006 Guidelines, which follows that in the World Reference Base for Soil Resources (FAO 1998). 

Using the three tier terminology of the IPCC, carbon stocks in organic soils are not explicitly 

computed using Tier 1 or Tier 2 methods (which estimate only annual C flux from organic soils, see 

below), but C stocks in organic soils can be estimated in a Tier 3 method (see IPCC 2006).  
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Where both mineral and organic soil types are present, the equation for estimating the change in 

SOC stocks (Eqn. 2) in a spatial feature is modified from Equation 2.24 in Chapter 2, Volume 4 of the 

2006 IPCC Guidelines to exclude inorganic carbon stocks:         

       

∆��� 
 ∆������� !" � #$ �!��%     (2) 

Where: 

∆��� = change in carbon stocks in soils in the spatial feature, t C ha
-1

; 

∆������� !" = change in organic carbon stocks in mineral soils in the spatial feature, t C ha
-1 

(Note: to convert from the units of t yr
-1

 derived from Eqn. 3a to t ha
-1

 here, multiply by the 

number of years in the monitoring period and divide by the area of the spatial feature); 

#$ �!��% = loss of carbon from drained organic soils in the spatial feature, t C ha
-1

, (see Eqn. 4 

below) (Note: to convert from the units of t yr
-1

 derived from Eqn. 4 to t ha
-1

 here divide by 

the area of the spatial feature and multiply by the number of years in the monitoring 

period); 

Note: Most spatial features will not include organic soils. 

3 .4.1  Mineral  Soil s  

The IPCC provides default (Tier 1) methods for estimating SOC stock changes on mineral soils which 

can be applied for this sub-indicator. Calculations use reference stocks and stock change factors for 

SOC. The reference SOC stocks, i.e. under native vegetation, are based on land areas that are 

stratified by climate regions and default soil types. The stock change factors are very broadly defined 

and include:  

• a land-use factor (FLU) that reflects C stock changes associated with type of land use,  

• a management factor (FMG) representing the main management practice specific to the 

land-use sector (e.g., different tillage practices in croplands), and  

• an input factor (FI) representing different levels of C input to soil.  

Each of these factors represents the change over a specified number of years, which can vary across 

sectors, but is typically invariant within sectors (e.g., 20 years for the cropland systems).  

All land in a homogeneous land cover unit should have common biophysical conditions (i.e. climate 

and soil type) and management history over the time period to be treated together for analytical 

purposes. It will also be necessary to ensure that these units can be aggregated to default land cover 

classes. Many spatial features will have more than one homogeneous land cover class (particularly 

for soil type and management system). In such cases, spatially-weighted averaging is required. 

Change in organic carbon stocks in mineral soils is estimated using Equation 2.25 in Chapter 2, 

Volume 4 of the 2006 IPCC Guidelines: 

 

∆������� !" 
 &'()�*'()+�,-�.
/               (3a)                          
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and 

��� 
	∑ &���1234,6,7 � 89:4,6,7 � 8;<4,6,7 � 8=4,6,7 � >%,?,�.%,?,�   (3b) 

Where:  

∆������� !" = change in carbon stocks in mineral soils in the spatial feature, t C yr
-1 

yr
-1

; 

���� = soil organic carbon stock in the last year of a reporting time period, t C; 

���+�*@� = soil organic carbon stock at the beginning of the reporting time period, t C; 

���� and  ���+�*@� are calculated using Equation 3b, where the reference carbon stocks 

and stock change factors are assigned according to the land-use and management activities 

and corresponding areas at each of the points in time (time = 0 and time = 0-T); 

T = number of years over a single reporting time period, yr; 

D = time dependence of stock change factors which is the default time period for transition 

between equilibrium SOC values, yr. Commonly 20 years, but depends on assumptions made 

in computing the factors 89:4,6,7  , 8;<4,6,7  and 8=4,6,7. If T exceeds D, use the value for T to 

obtain an annual rate of change over the reporting time period (0-T years); 

c represents the climate zones that are present in a spatial feature; 

s represents the soil types that are present in a spatial feature; 

i = the set of management systems that are present in a spatial feature; 

���1234,6,7  = the reference carbon stock, t C ha
-1

; 

89:4,6,7  = stock change factor for land-use systems or sub-system for a particular land-use, 

dimensionless [Note: FND is substituted for FLU in forest soil C calculation to estimate the 

influence of natural disturbance regimes]; 

8;<4,6,7 = stock change factor for management regime, dimensionless; 

8=4,6,7  = stock change factor for input of organic matter, dimensionless; 

>%,?,� = land area of the homogeneous land cover unit being estimated, ha.  

3 .4.2  Organic soi ls  

The basic methodology for estimating C emissions from organic (e.g., peat-derived) soils is to assign 

an annual emission factor that estimates the losses of C following drainage and/or fire (IPCC 2013 

Wetlands Supplement). Specifically, the area of drained and managed organic soils under each 

climate type is multiplied by the associated emission factor to derive an estimate of annual CO2 

emissions. Losses from organic soils are estimated using an adaptation of Equation 2.2 in Chapter 2 

of the IPCC 2013 Wetlands Supplement:  

#$ �!��% 
 #	A !��!�� B #C� �      (4) 

Where: 

#$ �!��%	 = total emissions from organic soils for the spatial feature, t C yr
-1

; 

#A !��!��	= emissions from drained organic soils for the spatial feature, t C yr
-1

; 
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#C� �= emissions from burning of organic soils for the spatial feature, t C yr
-1 

Note:
 
to convert 

from the units of t derived from Eqn. 6 to t yr
-1

 here divide by the number of years in the 

monitoring period.
 

Emissions from the drainage of peat soils are estimated as follows: 

 #A !��!�� 
 ∑ &>A !��!��4,�,D � E8A !��!��4,�,D.%,�,A	    (5) 

Where: 

#A !��!��= annual on-site emissions/removals from drained organic soils in a land-use 

category, t C yr
-1

; 

>A !��!��  = land area of drained organic soils in a land-use category in climate domain c, 

nutrient status n and drainage class d, ha;  

E8A !��!�� = emission factors for drained organic soils, by climate domain c, nutrient status 

n and drainage class d, t C ha
-1

 yr
-1

.  

Default values for carbon dioxide, methane and nitrous oxide emissions should be taken from Tables 

2.1, 2.3 and 2.5, respectively, in Chapter 2 of the 2013 IPCC Wetlands Supplement. 

Emissions from peat burning are estimated in accordance with Equation 2.8, Chapter 2 of the IPCC 

2013 Wetlands Supplement as follows: 

#C� � 
 	∑ ∑ �&>FG �� � H%,C � � � I%,�. � 10*K�<�L�3CL�   (6) 

Where:  

#C� �  = Amount of CO2 or non-CO2 emissions from fire in the spatial feature, tonnes;  

>FG �� 	= Area of peat burnt annually in the spatial feature, ha;  

P = Average mass of peat burnt in the spatial feature for climate domain c and fire type f (t 

d.m. ha
-1

);  

f  1, 2 …F fire types 

C = combustion factor, dimensionless; For all organic soil fires, the default combustion factor 

is 1.0, since the assumption is that all fuel is combusted (Yokelson et al. 1997); 

c represents the climate zones that are present in a spatial feature; 

I� = Emission factor in climate domain c for gas g (kg t
-1

 d.m. burnt);  

g   1, 2, 3 ... G greenhouse gases including carbon dioxide, methane and nitrous oxide 

(unitless);  

The value 10
-3

 converts #C� �  to tonnes.   

The amount of fuel that can be burnt is given by the area burnt annually and the mass of fuel 

available in that area. Default values are provided in Tables 2.6 and 2.7 of the IPCC 2013 Wetlands 

Supplement, Chapter 2. Due to limited data available in the scientific literature, organic soils have 

been very broadly stratified according to climate domain (boreal/temperate and tropical) and fire 

type (wild vs. prescribed).  
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3.5 National approach 

Where possible, it is good practice for countries to use a national approach to reduce uncertainty, 

even if they are only able to better specify certain components of the default approach.  

For mineral soils, under the simplest national approach (Tier 2), countries may choose to use the 

same linear equations as the default (Tier 1) method in conjunction with country-specific factors to 

improve the accuracy of the relative change factors, reference SOC stocks, climate regions, soil 

types, and/or land management classification systems. Country-specific values may be for all of 

these components, or any subset which would then be combined with default values. Reference soil 

C stocks can be determined from measurements, for example, as part of national soil survey and 

mapping activities. This will provide more representative values for an individual country and the 

ability to better estimate probability distribution functions that can be used in a formal uncertainty 

analysis (IPCC, 2003).  

Reference stocks should be consistent across the land uses (i.e., Forest Land, Cropland, Grassland, 

Settlements, and Other Land). Accepted standards for sampling and analysis of SOC and bulk density 

should be used and documented (see further discussion in Section 5.2). Stock change factors can be 

estimated from long-term experiments or other field measurements (e.g. chronosequence studies) 

for a particular country or region. The depth of measurement and time frame over which the 

management difference has been expressed should be provided (IPCC 2006). For organic soils, Tier 2 

approach for CO2 emissions associated with drainage of organic soils incorporates country-specific 

information into the inventory to estimate the emissions using the same calculations as provided for 

Tier 1. Potential improvements may include: deriving country-specific emission factors, specifying 

climate regions considered more suitable for the country, or using a finer, more detailed 

classification of management systems attributed to a land-use category. 

More advanced national methods which better capture annual variability in fluxes (Tier 3) may also 

be used. Such methods may include using calibrated and validated models, and/or developing a 

measurement-based inventory with a monitoring network to capture SOC stock changes. Tier 3 

approaches for SOC involve the development of an advanced estimation system that will typically 

better capture annual variability in fluxes, unlike Tier 1 and 2 approaches that mostly assume a 

constant annual change in C stocks over an inventory time period based on a stock change factor 

(IPCC 2006). Such approaches can address the non-linearity in transitions by using more advanced 

models, and/or by developing a measurement-based inventory with a monitoring network. In 

addition, Tier 3 inventories are capable of capturing longer-term legacy effects of land use and 

management. Further detail is provided in Section 5.2. 

3.6 Estimating relative change in SOC stock between two points in time 

Once the baseline SOC stocks and the SOC stocks at the end of the monitoring period have been 

consistently estimated, the relative percentage change in SOC stocks (i.e. whether carbon stocks are 

increasing, decreasing or remaining the same) is calculated as: 

M'() 
	 +'()N�*'()N��'()N� � 100     (8) 

Where:  
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M'() 	= relative change in soil organic carbon for spatial feature (%); 

����� = baseline soil organic carbon stock for spatial feature (t C ha
-1

); 

����� = soil organic carbon stock at the end of the monitoring period for spatial feature (t C 

ha
-1

). 

3.7 Estimating uncertainty 

It is good practice to report uncertainties in estimates and to minimise uncertainty as far as practical, 

even if these uncertainties are not used in a formal sense (i.e. in statistical tests; see Section 3.8). 

Here we briefly describe the IPCC guidance on how uncertainty is expressed in the default approach 

and methods for combining uncertainties to generate an overall uncertainty estimate. Guidance on 

how the individual uncertainties (in the areal estimates, change factors, emissions factors, etc.) are 

calculated is not provided here, but approaches to this are covered in detail elsewhere.  

The IPCC Guidelines recommend the use of a 95% confidence interval, which is the interval that has 

a 95% probability of containing the unknown true value. Therefore it is good practice to report the 

95% confidence interval with estimates of baseline SOC stocks and SOC stocks at the end of the 

monitoring period. This may also be expressed as a percentage uncertainty, defined as half the 

confidence interval width divided by the estimated value of the quantity multiplied by 100; Note 

that this uncertainty is twice the relative standard error (in %), a commonly used statistical estimate 

of relative uncertainty. Percentage uncertainty’ is the main way that uncertainty is provided in the 

relevant IPCC default tables (see Section 6).  

The default method for combining uncertainties is based on error propagation.  

Where uncertain quantities are to be combined by multiplication, a simple equation (based on 

Equation 3.1, IPCC 2006) for the uncertainty of the product, expressed in percentage terms is: 

O�$�!" 
 PO�Q BOQQ B…B O�Q     (9) 

Where: 

Utotal = percentage uncertainty in the product of the quantities (half the 95% confidence 

interval divided by the total and expressed as a percentage); 

Ui = percentage uncertainties associated with each of the quantities, i = 1, …, n 

Where uncertain quantities are to be combined by addition or subtraction, a simple equation (based 

on Equation 3.2, IPCC 2006) for the uncertainty of the sum, expressed in percentage terms is: 

O�$�!" 
 	P+:S.	TS�UV+:U.	TU�UV⋯V+:�.	T��U
|T�VTQV⋯T�|     (10) 

Where:  

Utotal = the percentage uncertainty in the sum of the quantities (half the 95 percent 

confidence interval divided by the total (i.e., mean) and expressed as a percentage). This 

term ‘uncertainty’ is thus based upon the 95 percent confidence interval;  

xi and Ui = the uncertain quantities and the percentage uncertainties associated with them, 

respectively. 
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3.8 Assessing the status of change in SOC stock 

A one-out-all-out (1OAO) approach is used to combine the results for the three sub-indicators, to 

assess degradation status for each monitoring period, for the overall Indicator 15.3.1. Degradation is 

considered to have occurred if significant negative change in any one of the three sub-indicators is 

detected, subject to national/local verification including the capacity to report and explain false 

positives/negatives. This requires assessment of whether there has been a significant decrease in 

SOC stocks. 

One approach to assessing change is to compare the average monitored SOC stock with the upper 

and lower bounds of the average baseline SOC for the same minimum unit of land. If the average for 

the same unit of land falls: 

i. outside the lower bounds of the 95% confidence interval measured as twice the standard 

deviation, the area would be considered degraded (significant decline in SOC); 

ii. outside the upper bounds of the 95% confidence interval measured as twice the standard 

deviation, the area would be considered improved (significant increase in SOC); 

iii. within the 95% confidence interval, the area would be considered in a stable state (no 

transition);  

An alternative statistical approach would be to assess the 95% confidence interval of the difference 

in SOC stocks between the baseline and the monitoring period for each land cover class/unit by 

combining uncertainties as described above. If the 95% confidence interval of the difference does 

not cover zero, then the change is significant, with the direction of change determined from Eqn. 6.  

Given the highly variable nature of the data for SOC stocks, it is likely that the confidence intervals 

will be large, and thus the two statistical approaches described above may not detect significant 

change even if degradation is occurring (i.e., result in a Type II error, or “false negative”, where a 

false null hypothesis is incorrectly retained). This is particularly likely if using the default approach, 

where, for example, reference stock estimates (IPCC 2003; 2006) have associated uncertainty of up 

to ± 90%. Based on this limitation, we conclude that statistical significance is likely to be a poor 

criterion for assessing degradation associated with decreased SOC stock for the default approach. 

An alternative approach may be to assess both the direction of change and magnitude of the relative 

percentage change (Eqn. 8) in SOC stocks, relative to some defined threshold, between the baseline 

and monitoring period. Then, for SOC stocks, the method of determining the status of change will be 

defined as:  

• Degradation: Spatial features with more than 10% average net reduction in SOC stocks 

between baseline and current observations. 

• Not degraded: Spatial features with less than 10% change or more than 10% average net 

increase in SOC stocks between baseline and current observations. 

Here we have suggested an arbitrary >10% change threshold, however, further refinement and 

justification of these threshold values is needed. This is likely to be a country decision based on 

available information, practicalities, etc. The examples provided in Box 1 and Box 2 give some 

indication of the magnitude of change that might be estimated using the default method. Two 

contrasting scenarios under the default approach give both a 10% increase based on changed 

management (reduced tillage) of 80% of the area of a spatial feature that was annual cropland (no 
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degradation), and a 25% decrease based on conversion of 70% of the area of a spatial feature from 

native forest to annual cropland (degradation).  

Others have suggested that interim procedures are required so that assessments of change can be 

made based on risk, probability and expert opinion (Vaughan et al. 2001). There are several options 

for this, including:  

• Simulation modelling to determine whether suspected trends in SOC stocks are likely to 

become clear.  

• Assembling panels of experts to undertake critical reviews and judge whether a perceived 

problem is significant – these panels would draw on all lines of evidence (e.g. process 

understanding, published literature, anecdotal evidence, initial monitoring results, 

simulation modelling).  

• Engaging panels of experts in creative scenario writing to thoroughly consider a range of 

future states. These scenarios can be used to devise programs of investigation that lead to 

early detection (Munn 1988).  

3.9 Providing national/sub-national context 

In the absence of, or as a complement to, national data, it is good practice to contextualize global 

and regional data sets with information at the national and, where possible, sub-national level. For 

example, in some cases, carbon stocks may be increasing for land use transitions that are actually 

considered land degradation, such as woody encroachment in grassland. Another example relates to 

identifying potential “hotspots” of degradation. An average computed for a country may hide 

hotspots of intense degradation that may be very significant (e.g. they may be the most fertile soils 

in the country). Assessment of “false positives” or degradation “hotspots” requires knowledge and 

interpretation at the local level. The most common approach involves the use of site-based data or a 

combination of quantitative and qualitative data. It is good practice to incorporate the capacity to 

generate an "explainable anomalies" or "false positive" map and a “hotspots” map when deriving 

the sub-indicator, maintaining original data with anomalies identified and explained. Further 

discussion is provided in Section 4.4.  

3.10  Summary of computation steps 

1. Where a default approach is used: 

a. Reference soil carbon stocks will be determined and documented for all major soil 

types, stratified by climate regions.  

b. Stock change factors and emission factors will be determined and documented for 

all land uses/management systems, and where needed, any additional sub-types. 

2. An assessment of SOC stocks within each homogeneous land cover unit of the defined 

disaggregation scheme will be made for the baseline. 

3. An average SOC stock will be generated for each identified stratum for the baseline period. 

The 95% confidence interval around the average will also be reported. 
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4. During the reporting period, the monitored SOC will be compared with the average baseline 

SOC for the same minimum unit of land by calculation the relative percentage change (Eqn. 

8).  

5. The most appropriate method to assess whether change results in a significant decrease in 

SOC (degradation) or an increase or no change in SOC (no degradation) will be applied. 

Where estimated overall uncertainties are relatively low, a statistical approach is the most 

robust way to estimate whether change is significant. However, in most cases, uncertainty is 

likely to be high and a thus statistical assessment is not recommended.  As an alternative, 

assessment of both the direction of change and magnitude of the relative percentage 

change in SOC stocks, relative to some defined threshold, is suggested.  

6. Increases in SOC stocks may not always be representative of a positive change. Potential 

false positives and explainable anomalies should be defined, justified and maintained in the 

original dataset.  

3.11  Worked examples using the default  calculations 

Example 1: Spatial feature with uniform climate, soil type and broad land cover class but differing 

cropland management systems 

The following example (modified from IPCC 2003) shows calculations for aggregating areas of 

cropland SOC stock change within a spatial feature over a 5-year reporting period. The spatial 

feature in a warm temperate moist climate on Mollisol soils (a type of high activity clay mineral soil) 

is made up of 10,000 ha of permanent annual cropland. Using the IPCC defaults in Table 2.3, IPCC 

2006, the native reference carbon stock (SOCREF) for the region is 88 t C ha
-1

.  

At the beginning of the calculation period, the distribution of cropland systems were 4,000 ha of 

annual cropland with low carbon input levels and full tillage and 6,000 ha of annual cropland with 

medium input levels and full tillage. Default stock change factors for croplands are provided in Table 

5.5, Vol. 4 in the IPCC 2006 Guidelines. Using Eqn 3a & b
1
, initial soil carbon stocks (SOC0) for the 

area were:  

4,000 ha × (88 t C ha
-1

 × 0.69 × 1 × 0.92) + 6,000 ha × (88 t C ha
-1

 × 0.69 × 1 × 1) = 587,770 t C.  

In the (current) measurement year, there are: 2,000 ha of annual cropping with full tillage and low C 

input, 7,000 ha of annual cropping with reduced tillage and medium C input, and 1,000 ha of annual 

cropping with no-till and medium C input. Thus total soil carbon stocks in the monitoring year (SOC0-

T) are:  

2,000 ha × (88 t C ha
-1

 × 0.69 × 1 × 0.92) + 7,000 ha × (88 t C ha
-1

 × 0.69 × 1.08 × 1) + 1,000 ha × (88 t C 

ha
-1

 × 0.69 × 1.15 × 1) = 671,968 t C.  

The average annual stock change over the period for the entire area is: (671,968 – 587,770) t C / 20 

yr = 84,198 t C/ 20 yr = 4,210 t C yr
-1

 increase.  

Using Eqn 2, over our spatial feature area of 10,000 ha and monitoring period of 5 years this is 

equivalent to 4,210 / 10,000 ha = 0.421 t ha
-1

 yr
-1

 = 0.421 × 5 = 2.1 t ha
-1

 increase. There are no 

organic soils in this spatial feature. 

Calculation of 95% confidence intervals uses the following IPCC default error values: 
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SOCREF: 88±90% (no estimate available, assumed error) 

FLU: long-term cultivated 0.69±12% 

FMG: full tillage 1.0±50% (no estimate available, assumed error); reduced tillage 1.08±5%; no-till 

1.15±4%; 

FI: low input 0.92±14%; medium input 1.0±50% (no estimate available, assumed error) 

Using Eqn. 8, the percentage uncertainty in the product of the quantities (half the 95% confidence 

interval divided by the total and expressed as a percentage) for t0 is: 

 = (0.4 × √90Q B 12Q	B50Q	 B 14Q	 ) + (0.6 × √90Q B 12Q	B	5Q	 B 50Q	 ) = 104% 

And for tn is: 

= (0.2 × √90Q B 12Q	B50Q	 B 14Q	 ) + (0.7 × √90Q B 12Q	B	5Q	 B 50Q	 + (0.1 × 

√90Q B 12Q	B	4Q	 B 50Q	) = 104% 

To calculate relative change (rSOC) from Eqn 8 for this spatial feature, where SOCt0 is 587,770 t C / 

10,000 ha = 58.8 t ha
-1

 and SOCtn is 671,968 t C / 10,000 ha = 67.2 t ha
-1

: 

rSOC = (67.2-58.8) / 58.8 × 100 = 14.3% 

Based on an increase in carbon stocks of 14%, this spatial feature has not degraded over the 

reporting period.  

1
Formulation B of the Eqn. is used here (see Box 2.1, Vol 4, IPCC 2006) which assumes activity data with 

transition matrices where land use changes are known explicitly rather than aggregate statistics. 

 

Example 2; Spatial feature with uniform climate, two soil types and conversion between land 

cover classes from Forest land to Cropland 

The following example shows calculations for SOC stock change within a spatial feature over a 10-

year reporting period. The spatial feature in a warm temperate dry climate is made up of 10,000 ha 

of native forest land; 3,000 ha on low activity clay (LAC) soils and 7,000 ha on high activity clay (HAC) 

soils.  

At the beginning of the calculation period, using the IPCC defaults in Table 2.3, IPCC (2006), the 

native reference carbon stock (SOCREF) is 24 t C ha
-1 

for the LAC soils and 38 t C ha
-1

 for the HAC soils. 

Note: If an average baseline was being calculated, this would be the average of the estimates over 

the period (e.g. two estimates over 10 years), but for simplicity, only one estimate is presented here. 

In the (current) measurement year:  

2,000 ha of native forest on LAC soils has been replaced by annual cropping with full tillage and low 

C input and 1,000 ha of native forest on LAC soils remains unchanged.  

5,000 ha of native forest on HAC soils has been replaced by annual cropping with full tillage and low 

C input and 2,000 ha of native forest on HAC soils remains unchanged. 

Degradation is assessed separately for each homogeneous land cover unit (in this case soil type) 

within the spatial feature: 
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LAC soils 

t0 3,000 ha × 24 t C ha
-1 

= 72,000 t C 

tn 2,000 ha × (24 t C ha
-1

 × 0.69 × 1 × 0.92) + 1,000 ha × 24 t C ha
-1 

= 54,470 t C 

 

Calculation of 95% confidence intervals uses the following IPCC default error values: 

SOCREF: 24±90% (no estimate available, assumed error) 

FLU: long-term cultivated 0.69±12% 

FMG: full tillage 1.0±50% (no estimate available, assumed error); 

FI: low input 0.92±14%. 

Using Eqn. 8, the percentage uncertainty in the product of the quantities (half the 95% confidence 

interval divided by the total and expressed as a percentage) for t0 is 90%, and for tn is: 

= (0.67 × √90Q B 12Q	B50Q	 B 14Q	 ) + (0.33 ×  90) = 100% 

To calculate relative change (rSOC) from Eqn 8 for this homogeneous land cover unit: 

SOCt0 is 72,000 t C / 3,000 ha = 24 t C ha
-1

 and SOCtn is 54,470 t C / 3,000 ha = 18.16 t C ha
-1

: 

rSOC = (18.16-24) / 24 × 100 = -24.3% 

Area LAC soils degraded = 2,000 ha 

HAC soils 

t0 7,000 ha × 38 t C ha
-1 

= 266,000 t C 

tn 5,000 ha × (38 t C ha
-1

 × 0.69 × 1 × 0.92) + 2,000 ha × 38 t C ha
-1

 = 196,612 t C 

Calculation of 95% confidence intervals uses the following IPCC default error values: 

SOCREF: 38±90% (no estimate available, assumed error) 

FLU: long-term cultivated 0.69±12% 

FMG: full tillage 1.0±50% (no estimate available, assumed error); 

FI: low input 0.92±14%. 

= (0.71 × √90Q B 12Q	B50Q	 B 14Q	 ) + (0.29 ×  90) = 100% 

To calculate relative change (rSOC) from Eqn 8 for this homogeneous land cover unit: 

SOCt0 is 266,000 t C / 3,000 ha = 38 t C ha
-1

 and SOCtn is 196,612 t C / 7,000 ha = 28.1 t C ha
-1

: 

rSOC = (28.1-38) / 38 × 100 = -26.1% 

Area LAC degraded = 5,000 ha 

The total area degraded in the spatial feature is 2,000 ha + 5,000 ha = 7,000 ha 
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4 Rationale and Interpretation 

4.1 Carbon stocks metric  

As outlined in Decision 22/COP.11
3
, soil organic carbon stock is the metric that will be used to assess 

trends in carbon stocks above and below ground, and once operational, this metric will be replaced 

by total terrestrial system carbon stock. Soil organic carbon is only one part of the system and is not 

a proxy of overall ecosystem health, but rather, a proxy of soil health. Soil organic carbon is an 

indicator of overall soil quality associated with soil nutrient cycling, soil aggregate stability and soil 

structure, with direct implications for water infiltration, vulnerability to erosion and ultimately the 

productivity of vegetation, and in agricultural contexts, yields. The management of soil organic 

carbon is central to maintaining soil health and ensuring global food security (Lal, 2004). 

Consequently, one of the greatest priorities for action concluded by The Intergovernmental 

Technical Panel on Soils (ITPS) in their Technical Summary
4
 of the Status of the World’s Soil 

Resources (Action 2, page ix) is that “The global stores of soil organic matter (e.g. SOC and soil 

organisms) should be stabilized or increased. Each nation should identify locally appropriate SOC-

improving management practices and facilitate their implementation. They should also work towards 

a national-level goal of achieving a stable or positive net SOC balance”. 

Although carbon stocks in non-forested ecosystems are typically largest in the soil pool, where 

woody perennial vegetation is present, the largest pool tends to be in the biomass, except where 

growing on organic soils (GFOI 2016). Further, in forested systems, changes in SOC stocks may not 

always capture degradation, for example, conversion of native forest to pasture may not result in a 

change in SOC stock (e.g. see review by Guo and Gifford 2002), but it will substantially reduce 

biomass carbon stock. Thus inclusion of total carbon stocks in the metric once operational will 

provide a more comprehensive indicator of degradation, particularly in cases of conversion of 

forested systems to other land uses.  

4.2 Land cover change 

Annex 1 outlines the methodological approaches that can be used to derive the activity data 

required for the default carbon stocks method. These activity data are: 1) baseline areas of land 

cover classes, stratified as necessary/where possible by management regime etc.; 2) conversion of 

land cover classes to other land cover classes, and 3) transfer between land cover sub-classes. Land 

cover classes should be able to be aggregated to the six IPCC classes (see Annex 1).  

Although SDG 15.3.1 target will be reported as a single figure, quantifying the area of land degraded 

as a proportion of land area, spatial disaggregation to the smallest possible unit has been highlighted 

as a preferable way to present SDG indicators (UNHQ 2015). SDG 15.3 can be mapped and 

disaggregated by land cover type or other policy-relevant units, such as agro-ecological, bio-cultural 

or administrative. These spatial feature boundaries can also provide a basis for spatial 

disaggregation for the land productivity and carbon stocks sub-indicators. It is good practice to 

                                                             
3
 http://www.unccd.int/en/programmes/Science/Monitoring-Assessment/Documents/Decision22-COP11.pdf 

4
 http://www.fao.org/3/a-i5126e.pdf 
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ensure that feature boundaries are kept constant over the reporting period (nominally 2016-2030), 

since flows should be calculated from two epochs of land cover within the same geographic area.  

Different countries may choose to use different spatial unit approaches. The choice of the spatial 

unit for land cover and land cover change (i.e. pixel, polygon, natural boundary or administrative 

boundary) will affect the calculation of changes in SOC stocks, including whether weighting is 

required. For example, if the spatial unit used is a natural feature (e.g. watershed), it is likely that 

there will be a mix of land cover classes, given as proportions, and degradation will be reported on 

this broad spatial unit.  

Computation of the carbon stocks sub-indicator requires that the area of land in that spatial unit at 

times t0 and tn is identical and that exactly the same pools of carbon (including reference depths for 

SOC) are included in all time steps. Land use categories/ carbon stocks may change with improved 

knowledge. There may therefore be a need to retrospectively correct earlier categorizations/ 

estimates.  

4.3 Uncertainty 

The concept of good practice underpins IPCC (2003) and IPCC (2006). Good practice is defined by 

IPCC (2003, Section 1.3; 2006, Vol. 1, Overview, Section 3) as applying to inventories that contain 

neither over- nor under-estimates so far as can be judged, and in which uncertainties are reduced as 

far as is practicable. Although there is no predefined level of precision, this definition aims to 

maximize precision without introducing bias, given the level of resources reasonably available for 

greenhouse gas inventory development.  

4 .3.1  With choice  of  method 

The main consideration in the selection of the default or nationally-specific method by a country is 

the current and likely future availability of data. Data sources are described in Section 5. The choice 

of method will have implications for the level of uncertainty in the estimate of changes in the SOC 

metric.  

The default method draws on area data (i.e. activity data) generated from the assessment of land 

cover change in combination with reference and emission factors obtained from the IPCC default 

tables corresponding to broad continental land cover types and management regimes. As such, 

derived estimates provide limited resolution of how carbon stocks vary sub-nationally and have large 

uncertainty. 

The inclusion of national data (and/or use of higher order methods) is a more rigorous approach to 

generating estimates of changes in the SOC metric, however, this requires the highest level of effort 

and resources. Reducing uncertainty in estimates requires improving stratifications and/or 

increasing the number of soil samples to use for the estimation. The capacity to do this will require 

improvements in analytical capabilities and sensing (see Section 5.2). Requirements include ground 

measurements, such as national inventories repeated through time, and intensive monitoring sites. 

Data from national inventories can provide information for default estimation methods, and for 

developing modelling approaches. Detailed information (at fine scale) generated at intensive 

monitoring sites can help address the difficulty of estimating stocks and stock changes by supporting 

development of model parameters, including emissions and removals factors. Derived estimates 

using such higher order methods provide information sub-national scale and have lower uncertainty. 
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4.3.2  In  est imates 

Both land cover areas and carbon densities have uncertainties which need to be combined when 

estimating changes in carbon stocks. Similarly, uncertainties for estimates of non-CO2 greenhouse 

gas emissions are calculated by combining component emission/removal factors and activity data 

uncertainties. 

Each of the IPCC default values has an error estimate provided, as should any nationally-derived 

data. There will also be different uncertainties associated with estimates for different carbon pools, 

and where multiple pools are considered and combined (i.e. if biomass carbon was included), this 

would need to be considered in an overall estimate of uncertainty. Approaches for determining an 

uncertainty for each C stock estimate for each time period include error propagation and uncertainty 

analysis (Monte Carlo simulation) (see IPCC 2003 guidance).  

4.4 Assessment of false posit ives 

In general, areas with long-term declining carbon stocks may be considered degraded while areas 

with increasing carbon stocks may be considered improving. However, estimated changes in carbon 

stocks also requires contextualization with information at national and sub-national levels. For 

example, in some cases, carbon stocks may be increasing for land use transitions that are actually 

considered land degradation, such as woody encroachment (i.e., land cover change from grassland 

to shrubland). Assessment of this type of exception (i.e., “false positive”) requires knowledge and 

interpretation at the local level.  

Identification of false positives could be assessed by using site-based data, and/or qualitative 

information and stakeholder perspectives from surveys, workshops, in-depth interviews, and 

the establishment of expert panels. Once the false positive areas have been identified, these 

transitions would need to be designated as a “negative change”. The relevant land area associated 

with this change would need to be included with other areas of negative change in the calculation of 

the overall indicator. 

5 Data Sources and Collection 

The type and availability of data will vary by country. Existing (and soon to be available) datasets are 

reviewed below in the context of spatial and temporal resolution, accuracy and validation, 

consistency and historic and ongoing temporal availability. Reviewed data are sourced from freely-

available global datasets, IPCC Good Practice Guidance (2003 GPG), IPCC guidelines (2006 GL) and 

other documents (e.g. Wetlands Supplement, 2013 WS) and nationally-contributed datasets. Further 

discussion is provided on monitoring methods for estimating SOC change.  

5.1 Global datasets 

Where country-specific data are not available, it is good practice to apply the best available defaults 

for SOC stocks to national land cover maps obtained by Earth observation data (see Annex 1). The 

minimum would be the six land cover categories of the IPCC (Forest land, Grassland, Cropland, 

Wetlands, Settlements, Other land) and relevant stratifications based on soil type and land 

management combined with default values for reference SOC stocks sourced from IPCC default 
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tables (or global soil maps) and default values for relative stock change factors associated with land 

use, management and inputs (also from IPCC default tables).  

In some cases it may be difficult to report on degradation using IPCC defaults because these do not 

cover all transitions. An alternative default approach, perhaps extending the existing IPCC defaults to 

include IPCC defaults for stratification by climate, ecological, disturbance or management and 

national proxy (or ‘auxiliary’ data, GFOI 2016) data, may be used. There is already a precedent for 

this by countries reporting on degradation for REDD+ using national data. 

5.1.1  Land cover  and land cover  change 

Global default methods for estimating changes in carbon stocks are strongly reliant on land cover 

change data (see Annex 1), which include:  

1. Baseline areas of, as a minimum, the six IPCC land cover classes, sub-stratified as 

necessary/where possible by type and management regime;  

2. Conversion of land cover classes to other land cover classes; and   

3. Transfer between land cover sub-classes.  

Global or regional land cover products are based on earth observation data. Available global 

datasets are summarized in Annex 1.   

5 .1.2  SOC stocks 

At the broadest level, the IPCC provides a systematic approach for estimating carbon stock changes 

in soils (IPCC 2003, 2006, 2013). IPCC defaults exist for the minimum six land cover types and are 

stratified further into combinations based on soil type, climate and management. Spatial 

stratification based on these defaults would further improve the quality of the results at the National 

level.  

The IPCC default values for reference SOC stocks and stock change factors reflect the most recent 

review of changes in soil carbon with conversion of native soils. Some limitations of using the IPCC 

defaults include the lack of relative change factors for some climates, as well as a paucity of change 

factors for specific management scenarios. The available defaults are summarised for mineral (see 

Eqn. 3) and organic soils (see Eqns. 4-6) in Tables 2 and 3, respectively. They are also provided in the 

IPCC Emission Factor Data Base (http://www.ipcc-nggip.iges.or.jp/EFDB/main.php) which is regularly 

updated.  

 

Table 2. Source of defaults in IPCC guidance documents for factors associated with change in SOC stocks in mineral soils. 

Default parameter IPCC 2003 GPG IPCC 2006 GL IPCC 2013 WS 

Reference (under native vegetation) 

SOC stocks (t C ha
-1

) 

Table 3.2.4 

Table 3.3.3 

Table 3.4.4 

Table 2.3 

 

Table 5.2 

Relative stock change factors Table 3.3.4 

Table 3.4.5 

Table 5.5 

Table 5.10 

Table 6.2 

Table 5.3 
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As an alternative to using IPCC defaults for reference SOC stocks in mineral soils, where available and 

considered robust and representative, reference SOC stocks could be derived from global spatial soil 

datasets and then the IPCC stock change factors be applied (in Eqn. 3 above). For example, in the 

absence of a national SOC database, use of the SOC 0-30 cm product derived from 

SoilGrids250m (see details below) as a stand-in for baseline SOC stock has been recommended 

for Land Degradation Neutrality target setting
5
, noting this first requires derivation of stock SOC 

concentration and bulk density.  

Table 3. Source of defaults in IPCC guidance documents for emission factors associated with change in SOC stocks in organic 

soils.  

Default parameter IPCC Document Chapter reference Table reference 

Annual CO2-C emission factor for 

drained organic soils in managed 

forests 

IPCC 2003 GPG Ch. 3 Table 3.2.3 

Annual CO2-C emission factor for 

cultivated organic soils 

IPCC 2003 GPG Ch. 3 Table 3.3.5 

 

Annual CO2-C emission factor for 

managed grassland organic soils 

IPCC 2003 GPG Ch. 3 Table 3.4.6 

Annual CO2-C and N2O-N 

emission/removal factors for drained 

organic soils in managed forests 

IPCC 2006 GL Ch. 4 Table 4.6 

Annual CO2-C emission factor for 

cultivated organic soils 

IPCC 2006 GL Ch. 5 Table 5.6 

Annual CO2-C emission/removal factors 

for drained grassland organic soils 

IPCC 2006 GL Ch. 6 Table 6.3 

Annual CO2-C on-site 

emissions/removals factor and CO2-C 

off-site emission factor for drained 

organic soils in all land-use categories 

IPCC 2013 WS Ch. 2 Tables 2.1, 2.2 

Annual N2O-N emissions factor for 

drained organic soils 

IPCC 2013 WS Ch. 2 Tables 2.3, 2.4 

CO2-C and CH4 emissions/removals 

factors for peat fires in all land-use 

categories 

IPCC 2013 WS Ch. 2 Tables 2.7 

 

International organizations such as FAO, International Soil Reference and Information Center (ISRIC) 

World Soil Information, and others have compiled and harmonized national soil information in 

several global datasets. These have different spatial resolutions and are at different stages of 

development, but have potential for estimating reference SOC stocks. Existing freely-available 

sources include: 

• Harmonized World Soil Database (HWSD): This is the current de facto standard soil grid for 

the world despite its acknowledged shortcomings (GSP 2014). Version 1.2 is the latest 
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 Methodological note to set national voluntary Land Degradation Neutrality (LDN) targets using the UNCCD indicator framework , 
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update (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-

world-soil-database-v12/en/). Spatial resolution is 30 arc seconds (about 1 km). ISRIC has 

updated the HWSD (Batjes, 2016) resulting in a database (WISE30sec) with more depth 

intervals and more parameters quantified, and an estimate of uncertainty (SD). There is no 

assessment of accuracy.  

• SoilGrids1km (Hengl et al. 2014; http://www.isric.org/content/faq-soilgrids) is a global 3D 

soil information system at 1 km resolution containing spatial predictions for a selection of 

soil properties (at six standard depths) including SOC stock (t ha
-1

). Prediction accuracies 

assessed using 5–fold cross-validation were only 23% for SOC (Hengl et al. 2014).  

Two other datasets with higher spatial resolution are currently under development: 

• GlobalSoilMap (Arrouays et al. 2014a,b; http://www.globalsoilmap.net/) is a digital soil map 

project that aims to provide a fine-resolution (100 m) global grid of soil functional 

properties, including SOC stock, with estimates of their associated uncertainties. A gridded 

date-map will be made to indicate the date (in years) that the soil property value most 

closely reflects. To date, several countries have produced grids of soil properties, including 

SOC and bulk density (e.g. Viscarra Rossel et al. 2015). However, progress on this has been 

very slow. 

• SoilGrids250m (Hengl et al. 2017; http://www.isric.org/content/faq-soilgrids) is a global 3D 

soil information system at 250 m spatial resolution. Products of SOC percentage, bulk 

density, gravel fraction and depth to bedrock can be used to calculate a predicted SOC 

stock for 0-30 cm. Accuracy was assessed using 10-fold, repeated cross-validation. Relative 

to SoilGrids1km, the amount of explained variation for SOC was improved from about 23% 

to about 69%. The June 2016 version of SoilGrids250m is known to over predict SOC stocks 

for soils with > 8% SOC (approx. 4% of soil profiles) due to issues with the bulk density layer 

not decreasing at a sufficiently fast rate with increasing %SOC (see 

https://github.com/ISRICWorldSoil/SoilGrids250m/issues/27). An updated version is 

currently under development. For now, SOC stocks should be considered as an 

overestimate
6
.    

It should be noted that, as for the IPCC defaults, the predictions derived from soil maps at a specified 

location will have very wide confidence intervals. In general, the use of datasets with the highest 

spatial resolution is recommended.    

There are several issues and limitations with currently-available data for SOC stocks. For example, 

for SoilGrids250m, several limitations to the current maps used to construct SOC stock have been 

identified
6
. These relate primarily to predictions being based on soil legacy data and include:  

• There is a paucity of data on bulk density and gravel content. Misuse of these data in 

calculation of SOC stocks can lead to systematic overestimation (e.g. see Poeplau et al. 

2017); 

• Measurements for SOC (%), bulk density, gravel content and soil depth have been collected 

with different measurement methods; 
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27 

 

• Soil data were collected over a large period of time (approximately the past 60 years for 

SOC, with the bulk centred on ~1995) and predictions were not made for the year 2000 (but 

assumed so in the absence of other, more suitable global data); 

• Soil data were collected for various purposes, so there may be sampling bias (e.g. an over-

representation of agricultural areas is common); 

• The collection of legacy data (WOSIS) is nowhere near exhaustive, with much existing legacy 

data yet to be accessed.  

Many of these issues identified for SoilGrids250m are also relevant to the other global maps that 

exist or are under development. Further, many map soil organic carbon content and bulk density but 

not soil carbon stocks which requires multiplying the maps and average the depths to derive the 0-

30 cm SOC stocks. 

Not all of the currently available global map products are likely to provide a better alternative to the 

IPCC defaults. However, SoilGrids 250m is likely to be a better alternative for deriving reference SOC 

stocks, although as might be expected, it may provide estimates that are biased. Where available, 

regional and country-specific, for example (but not exclusively) produced to GlobalSoilMap 

specifications, are likely to provide the best alternative (see Section 5.2.2). 

The global spatial products described above for estimating SOC reference stocks are currently not 

dynamic. However, even if planned improvements in the accuracy of predictions are made, the 

global grid (even time-stamped releases over several decades) would not necessarily be the most 

effective way of detecting SOC stock change. Other strategies are more sensitive (e.g. a well-

designed monitoring network such as Land Use/Cover Area Frame Statistical Survey (LUCAS); see 

Section 5.2.2.2) and can provide policy-relevant information faster (e.g. through the use of expert 

elicitation). Ideally, country-specific baseline maps would be used to design future monitoring 

programs for evaluating the impacts of land cover and land management on SOC stock for Tier 3 

methodologies.  

5.2 National datasets 

The Framework and Guiding Principles for a Land Degradation Indicator
7
 recommends that 

countries: “Use National Data, to the greatest extent possible, to derive the sub-indicators and other 

relevant indicators and information at the country level covering bio-physical, governance and socio-

economic conditions as well as the status of land resources”.  

5 .2.1  Land cover  and land cover  change 

Guidance for land cover change is provided in Annex 1. National land cover products are based on 

earth observation data at finer resolutions than for global products. Landsat satellites provide a time 

series of remotely sensed digital images spanning 40 years and are being used widely in monitoring 

activities. Available datasets are summarized in Annex 1. Broadly, national datasets for land cover 

change can include: 

                                                             
7
 Framework and Guiding Principles for a Land Degradation Indicator (Draft for Consultation), available at: 

http://www.unccd.int/Lists/SiteDocumentLibrary/Rio+20/LDN%202016/Framework%20and%20Guiding%20Principles%20for%20a%20Lan

d%20Degradation%20Indicator.pdf 
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1. Nationally-derived land cover products based on earth observation data, with specifically 

designed legends and calibration for local conditions; and 

2. National land cover products based on the integration of earth observation data and 

ongoing field survey programs. 

Countries can use various methods to obtain land use data, including annual census, periodic surveys 

and remote sensing. Each of these methods of data collection will yield different types of 

information (e.g., maps or tabulations), at different reporting frequencies, and with different 

attributes (IPCC 2006). As outlined in IPCC (2006), it is good practice for all national data to be:  

• Adequate, i.e. capable of representing land-use categories, and conversions between land-

use categories;  

• Consistent, i.e. capable of representing land-use categories consistently over time, without 

being unduly affected by artificial discontinuities in time-series data;  

• Complete, which means that all land within a country should be included, with increases in 

some areas balanced by decreases in others, recognizing the bio-physical stratification of 

land if needed (and as can be supported by data); and 

• Transparent, i.e. data sources, definitions, methodologies and assumptions should be clearly 

described. 

For countries already reporting to REDD+, some consistency with REDD+ methods in defining forest 

sub-classes is recommended. For example, a logical extension for countries already reporting to 

REDD+ would be to stratify forest land into sub-classes of primary forest, modified natural forest and 

planted forest (as per the minimum number of national sub-categories identified in GFOI 2016 and 

similarly, in FAO 2015). 

5.2.2  SOC stocks 

A summary of existing regional (continent) and country baseline maps for SOC stocks is provided in 

Table 4. Recent information on surveyed SOC stock estimates from 20 regions in the world is also 

provided in Minasny et al. (2017).   

Table 4. Examples of continents/countries that have estimated spatially-explicit baselines of SOC stocks for the 0–30 cm 

layer.   

Country/continent Reference 

Australia Viscarra Rossel et al. (2014) 

New Zealand New Zealand Agricultural Greenhouse Gas Research Centre (2016) 

South Korea Hong et al. (2010) 

USA Odgers et al. (2012) 

Mexico Vargas et al. (2017) 

Chile Pandarian et al. (2016) 

Nigeria Akpa et al. (2016) 

Europe de Brogniez et al. (2015) 

Denmark Adhikari et al. (2014) 

France Mulder et al. (2016) 

Scotland Poggio and Gimona (2014) 
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Turkey Madenoglu et al. (2017)  

 

As concluded by the Intergovernmental Technical Panel on Soils (ITPS) in their Technical Summary
8
 

of the Status of the World’s Soil Resources (Action 4, page ix), regional assessments frequently base 

their evaluations on studies from the 1990s based on observations made in the 1980s or earlier. 

Thus there is a strong a need to improve our knowledge about the current state and trend in the 

condition of soil, and an initial emphasis should be on improving observation systems, including for 

soil organic carbon.  

Of particular relevance to national capability in estimating SOC stocks is Pillar Four of the Global Soil 

Partnership (GSP). The aim of Pillar 4 is to enhance the quantity and quality of soil data and 

information: data collection (generation), analysis, validation, reporting, monitoring and integration 

with other disciplines. ‘The Plan of Action for Pillar Four’ (GSP 2014), officially endorsed by all 

countries, has four recommendations:  

• Recommendation 1: An enduring and authoritative system for monitoring and forecasting 

the condition of the Earth’s soil resources should be established under the auspices of the 

Global Soil Partnership to meet international and regional needs.  

• Recommendation 2: The global soil information system should use soil data primarily from 

national and within-country systems through a collaborative network and the distributed 

design should include facilities for incorporating inputs from the new sources of soil data 

and information that are evolving rapidly.  

• Recommendation 3: The global soil information system should be integrated into the much 

larger effort to build and maintain the Global Earth Observing System of Systems (overseen 

by the Group on Earth Observations) and close attention should be given to issues relating 

to the protection of privacy, intellectual property rights and terms of use.  

• Recommendation 4: Implementation of the global soil information system should include a 

training program to develop a new generation of specialists in mapping, monitoring and 

forecasting of soil condition, with an emphasis on countries where improved soil knowledge 

is essential for food security and restoration and maintenance of ecosystem services. 

The subsequent Pillar 4 Implementation Plan
9
 provides the guidance to build the global soil 

information system based on soil data sets provided by national and other institutional soil 

information institutions according to product specifications, and recognizes governance as an 

important element of the plan. 

Under the Global Soil Partnership (GSP), FAO member countries and all GSP partners have been 

invited to support and contribute to the development of the Global Soil Organic Carbon map (GSOC 

map) that will be released by the end of 2017
10

. Initial guidelines for sharing national 

data/information to compile the GSOC map have recently been released
11

. 

                                                             

8
 http://www.fao.org/3/a-i5126e.pdf 

9
 http://www.fao.org/3/a-bl102e.pdf 

10
 http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/435193/ 

11
 http://www.fao.org/3/a-bp164e.pdf 
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5.2.2.1  Country-specifi c  defaults 

At the broadest level, use of national datasets might include national stratification of land cover 

categories/subcategories and country-specific defaults for SOC stocks and stock change factors for 

these units. Where countries have their own information on reference SOC stocks and/or change 

factors they should use these in accordance with Tier 2 methodologies for preparing National 

Greenhouse Gas Inventories in IPCC (2006). Ground-based data can be used to estimate SOC values 

and to derive stock change factors for mineral soils, as well as to estimate emissions and removals 

factors for organic soils. For nationally-derived default data on SOC stocks, it is good practice to: 

1. Use standardised measurement units, i.e. tonnes SOC per ha for 0–30 cm depth. 

2. Where available and robust, use national spatial datasets for SOC reference stocks (e.g. see 

Table 4). 

3. Where countries have their own information on the effect of management within land cover 

classes (i.e. change factors for land use change, management within land uses and/or inputs 

on SOC stocks), use these.  

For the latter, existing agricultural field trials provide one immediately available resource for the 

study of management impacts on soil carbon sequestration. These data sets have both informed soil 

carbon modelling (e.g. Parton et al 1987; Skjemstad et al 2004) and formed the basis for the stock 

change factors used in current IPCC inventory guidelines (IPCC 2006; Ogle et al 2005). A recent 

review (Sanderman and Baldock 2010) highlighted some of the difficulties in using field trial data in a 

predictive capacity to account for changes in SOC stocks, and presented a critical evaluation of 

current IPCC Guidelines (IPCC 2006) for accounting for emissions or removals resulting from SOC 

stock changes. They found that results from most agricultural field trials indicate a relative increase 

in soil carbon stocks with the adoption of various improved management practices. However, the 

few available studies with time series data suggest that this relative gain is often due to a reduction 

or cessation of soil carbon losses rather than an actual increase in stocks. Thus they argued that 

stock change data from agricultural field trials may have limited predictive power when the state of 

the soil carbon system is unknown and that current IPCC accounting methodologies developed from 

the trial results may not properly credit these management activities. We suggest that there is a real 

need for a large technical program to more comprehensively establish relationships between land 

management and SOC stocks and stock change for a wider range of land uses and managements, 

across all regions.  

5.2.2.2  Integration of  ground-based data 

More advanced approaches would include integration of ground-based data from national 

monitoring systems with earth observation and modelling. Because estimates from default values 

and maps have wide associated uncertainties, more sensitive methods are recommended to detect 

soil change. Where possible, it is good practice to use ground-based monitoring of SOC stocks to: i) 

calibrate and validate models for spatial and temporal estimation of SOC stocks, and ii) detect and 

interpret any changes detected, assess their causes, and identify management interventions that 

address land degradation. As discussed earlier, Pillar 4 of the GSP aims to provide national capability 

in this area.  

In the context of SOC stock change, examples of relevant ground-based observations include: 

• Inventories (national, subnational) based on plot (or transect) measurements; 
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• Intensive monitoring studies, where the focus is on ecosystem functioning and processes; 

• Auxiliary spatial data on land use, management, disturbance history, soil type which can be 

used to guide the selection and application of emissions and removals factors;  

• Research data that can be used to estimate emissions and removals.  

Determination of soil organic C stock requires measurements of soil organic C concentration, soil 

bulk density and gravel content, as described in Eqn. 1. Monitoring is challenging because SOC stocks 

can change slowly (often over decades) and early detection can be difficult; short-range spatial 

variation is typically large and can be easily confused with temporal variation; and measurement is 

often time consuming and relatively expensive (McKenzie et al. 2002). Sampling, i.e. the selection of 

locations and times on which observations are taken, is an important part in mapping and 

monitoring of soil carbon stocks. Indeed, appropriate sampling design is essential for the success of 

monitoring programs for detecting change in SOC stocks. It is good practice to use appropriate 

sampling designs for ground-based measurements to enable robust and reliable estimation of SOC 

stocks and stock change. Some considerations in measurement and monitoring of SOC stocks 

include: 

• Spatial sampling strategies (site selection, sampling locations, number of samples, bulking 

etc.) 

• Temporal sampling strategies (timing, frequency) 

• Measurement (accuracy, cost, etc.) 

• Scaling of point measurements to areal estimates. 

Specific guidance on these aspects is context-specific, and is not provided here, but is covered in a 

number of references (e.g. Arrouays et al. 2014c; Chappell et al. 2013; DotE 2014b; de Gruijter et al. 

2006; 2016; McKenzie et al. 2002). Few countries currently have national systems in place for 

statistically-based sampling of SOC, with most examples in Europe (e.g. France, UK). One example is 

provided in Box 3.  
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Box 3: Example of statistically-based sampling of soil: LUCAS 

The European project LUCAS (Land Use/Cover Area Frame Statistical Survey
12

) may provide some 

guidance for monitoring, although some modifications are recommended in the context of SOC 

stocks. In 2009, the European Commission extended the periodic LUCAS to sample and analyse the 

main properties of topsoil in 23 Member States of the European Union (EU)
13

. This topsoil survey 

represents the first attempt to build a consistent spatial database of the soil cover across the EU 

based on standard sampling and analytical procedures, with the analysis of all soil samples being 

carried out in a single laboratory. Approximately 20,000 points were selected out of the main LUCAS 

grid for the collection of soil samples. A second round of sampling is being processed. The topsoil 

survey was designed to monitor a number of soil properties. In the context of monitoring SOC 

stocks, two modifications would be recommended. First, sampling to depths that meet IPCC 

standards (i.e., to 30 cm) rather than the 20 cm currently used in LUCAS. Second, measuring bulk 

density in addition to SOC concentration to derive SOC stocks. The first rounds of sampling derived 

bulk density from spatial data on topsoil packing density available from the European Soil database, 

however, methods have now been adapted for the planned 2018 sampling to collect samples for the 

assessment of new properties including bulk density and thickness of the organic horizon in peat 

soils
14

. 

 

5.2.2.3  Use of proximal  sensing 

The development of new analytical methods based on sensing can help with the acquisition of data 

for SOC stocks, including estimating baselines (see Box 4). Sensors can provide rapid, accurate, non-

destructive and inexpensive measurements of soil properties. For carbon accounting, they need to 

be accurate, sensitive to detecting small changes in SOC stocks, and enable timely feedback to 

account for the change. There are current reviews on the use of soil sensing for measuring SOC 

concentration which highlight the usefulness of visible-near infrared (vis–NIR) and mid-infrared (mid-

IR) spectroscopy (e.g. Stenberg et al., 2010; Bellon-Maurel and McBratney, 2011; Viscarra Rossel et 

al., 2011; Reeves et al., 2012; Izaurralde et al., 2013). Although there are fewer articles that address 

the sensing of soil bulk density, there have been some recent advances that use gamma-ray 

attenuation to accurately measure soil bulk density (e.g. Lobsey & Viscarra Rossel 2016). Calculation 

of SOC stock requires measures of bulk density and gravel content, and new systems that integrate 

different soil sensors (e.g. vis–NIR; gamma-ray attenuation, digital cameras) with robust statistical 

analytics and modelling are being developed to address the lack of such data for monitoring SOC 

stocks (e.g. Viscarra Rossel et al. 2017). Further, there is recent work demonstrating the use of soil 

sensors for SOC stock baselining (e.g. Viscarra Rossel et al. 2016). 

Viscarra Rossel and Bouma (2016) provide discussion on the use of proximal soil sensors and their 

role in the development of sustainable agricultural productions systems and innovative 

environmental and regional policies. They suggested that proximal soil sensing can be also used to 

effectively monitor SOC stock for accounting purposes and be central to the adoption of best 
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 http://esdac.jrc.ec.europa.eu/projects/lucas 

13
 http://esdac.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR26102EN.pdf 

14
 http://publications.jrc.ec.europa.eu/repository/bitstream/JRC105923/jrc105923_lucas2018_jrctechnicalreport.pdf 
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agronomic practices that also reduce greenhouse gas emissions and allow significant carbon 

sequestration to reach the ‘4 per 1000’ proposal made by the French authorities ahead of the 21
st

 

Conference of Parties to the United Nations Framework Convention on Climate Change (COP21). 

Box 4: Example of deriving a baseline using current and historical point data and archived soil 

samples combined with spectroscopic sensors 

Viscarra Rossel et al (2014) derived a baseline for SOC stocks in Australia for the period 2000–2013. 

They utilised data from a national Soil Carbon Research Program that produced current data on SOC 

stocks for agricultural regions of Australia. However, with this dataset alone, it would have been 

impossible to map the whole of the country because there was no data for the large majority of 

areas in the north, northwest and centre of Australia. Therefore they used historical archives of soil 

samples and measured their carbon and bulk density with spectroscopic sensors to enhance the 

dataset so that it had good spatial coverage over the entire country. Without the new analytical 

capability from the spectroscopic sensors, it would have been too expensive to analyse the archived 

soil for organic C and not possible to analyse them for bulk density. This same approach is now being 

used elsewhere in the United States of America and in China.  

6 Total carbon stocks 

Based on Decision 22/COP.11, once operational, the metric for the carbon stocks sub-indicator will 

be broadened from SOC stock to total carbon stocks in all pools (i.e. aboveground biomass, 

belowground biomass, litter, dead wood and soil). In this section we briefly describe approaches that 

could be used to estimate total carbon stocks. 

6.1 Default approach 

Where country-specific data/capability are currently lacking, a default (‘Tier 1’) approach should be 

used to estimate the other carbon pools. The IPCC provides a systematic approach for estimating 

carbon stock changes biomass and debris (IPCC 2003, 2006, 2013). The equation for estimating the 

change in total carbon stocks (Eqn. 11) in a spatial feature is modified from Equation 2.3 in Chapter 

2, Volume 4 of the 2006 IPCC Guidelines to exclude harvested wood products: 

∆� 
 ∆�̂ < B	∆�__ B	∆�/` B	∆�9=	 B	∆���	    (11) 

Where: 

∆C = total carbon stocks in the spatial feature; 

∆CAB = carbon stocks in aboveground biomass in the spatial feature; 

∆CBB = carbon stocks in belowground biomass in the spatial feature; 

∆CDW = carbon stocks in dead wood in the spatial feature; 

∆CLI = carbon stocks in litter in the spatial feature; 

∆SOC = organic carbon stocks in soil in the spatial feature. 

As outlined in IPCC (2006), depending on country circumstances, stock changes may not be 

estimated for all pools shown in Equation 11. There are simplifying assumptions about some carbon 
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pools under Tier 1 methods: change in below-ground biomass C stocks are assumed to be zero; dead 

wood and litter pools may be combined as ‘dead organic matter’ and dead organic matter stocks are 

assumed to be steady for non-forest land use categories; though, for Forest Land converted to 

another land use, default values for estimating dead organic matter carbon stocks are provided. 

Relevant default (Tier 1) equations for estimating changes in biomass and debris pools are provided 

in Chapter 2, Volume 4 of the 2006 IPCC Guidelines.  

IPCC defaults exist for the minimum six land cover types and are stratified further into combinations 

based on climate, ecological, disturbance or management. Spatial stratification based on these 

defaults would further improve the quality of the results at the National level. The available IPCC 

defaults are provided in the 2003 Good Practice Guide, 2006 Guidelines and 2013 Wetlands 

Supplement for aboveground biomass stocks, root to shoot ratios (for estimating belowground 

biomass from aboveground biomass) and debris stocks, and are summarised in Tables 5 and 6, 

respectively. They are also provided in the IPCC Emission Factor Data Base (http://www.ipcc-

nggip.iges.or.jp/EFDB/main.php) which is regularly updated.  

 

 

 

 

 

 

Table 5. Source of defaults in IPCC guidance documents for factors associated with estimating change in biomass carbon 

stocks. 

Default parameter IPCC 2003 GPG IPCC 2006 GL IPCC 2013 WS 

Carbon fraction of above ground forest 

biomass 

Default = 0.5 Table 4.3  

Ratio of below ground biomass to above 

ground biomass 

Table 3A.1.8 Table 4.4  

Above ground biomass stocks in natural and 

plantation forests 

Tables 3A.1.2 & 

3A.1.3 

Tables 4.7-4.11 

(excl. 11B) 

 

Above ground biomass for various types of 

perennial croplands 

Table 3.3.2 Table 5.3  

Biomass carbon stocks present on Land 

Converted to Cropland in the year following 

conversion 

Table 3.3.8 Table 5.9  

Above ground biomass for various types of 

grasslands 

Table 3.4.2   

Ratio of below-ground biomass to 

aboveground biomass for the major 

grassland  & savanna ecosystems of the 

world 

Table 3.4.3 Table 6.1  

Biomass stocks present on grassland, after 

conversion from other land use 

Tables 3.4.2 & 

3.4.9 

Table 6.4  
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Above ground biomass stocks in mangroves   Table 4.3 

Ratio of below ground biomass to above 

ground biomass in coastal wetlands 

  Tables 4.5, 4.9 

& 4.10 

 

Table 6. Source of defaults in IPCC guidance documents for factors associated with estimating change in litter and dead 

wood carbon stocks. 

Default parameter IPCC 2003 GPG IPCC 2006 GL IPCC 2013 WS 

Forest litter and dead wood carbon stocks Table 3.2.1 & 

3.2.2
A
 

Table 2.2  

Litter and dead wood stocks in mangroves    Table 4.7 

A
 Dead wood stocks are given as dry matter.  

6.2 National approaches 

Tier 2 and 3 methods use nationally-derived data and more disaggregated approaches and/or 

process models, which allow for more precise estimates of changes in carbon stocks in biomass. It is 

good practice to ensure that models are tested against field measurements (IPCC 2006). 

Under Tier 2 methods, country-specific data on ratios of below-ground to above-ground biomass can 

be used to estimate below-ground stock changes. For land converted to a new land cover category, 

Tier 2 methods to calculate annual change in biomass stocks replace Equation 2.4 by Equation 2.15 

(Vol. 4, IPCC 2006), where the changes in carbon stock are calculated as a sum of increase in carbon 

stock due to biomass growth, changes due to actual conversion (difference between biomass stocks 

before and after conversion), and decrease in carbon stocks due to losses. Tier 2 methods for 

estimating carbon stock changes in dead organic matter (DOM) pools calculate the changes in dead 

wood and litter carbon pools (Equation 2.17, Vol 4, IPCC 2006). Two methods can be used: either 

tracking inputs and outputs (the Gain-Loss Method, Equation 2.18) or estimating the difference in 

DOM pools at two points in time (Stock-Difference Method, Equation 2.19). These estimates require 

either detailed inventories that include repeated measurements of dead wood and litter pools, or 

models that simulate dead wood and litter dynamics. The same equation is used for dead wood and 

litter pools, but their values are calculated separately. 

As for SOC stocks, in most cases it is envisaged that estimates of changes in carbon stocks above and 

below ground associated with land degradation activities will be made using a combination of 

remotely-sensed and ground-based data. Remotely sensed and auxiliary ground-based data in 

combination are likely to be useful for stratification in order to increase sampling efficiency. If 

sufficient national inventory data are available over space and time and at sufficient spatial 

resolution, repeated inventories can be used to directly estimate stock changes associated with 

activities. It will often be best to use national inventory data in combination with remotely-sensed 

data. Data from national inventories are also a potentially valuable source of information for 

estimation of biomass using gain-loss methods, and for developing modelling approaches (empirical, 

process-based or other types of advanced models) at Tier 3. A model-based inference approach, 

where carbon stock is inferred from models, and change in carbon stock modelled for each land 

cover change, can also be used.  
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6.3 Biomass products 

6.3.1  Global/regional  products  

A recent review of the potential for estimation of forest biomass by remote sensing (GFOI 2016) 

suggests that existing large-scale biomass maps derived from remote sensing data need extensive in-

country testing to confirm that they are reliable for application in specific forest types and at the 

spatial scale of interest. Because biomass estimation error using remote sensing is high at plot scale 

(< 1 ha) and scales of up to 100 ha (e.g. Saatchi et al. 2011), robust field estimates of biomass based 

on adequate plot size, sufficient spatial sampling, and use of appropriate allometrics are needed 

(e.g. Chave et al. 2004; Avitabile et al. 2011). This means that currently the method is unlikely to be 

cost efficient (GFOI 2016).  

Examples of existing global and regional biomass map products include: 

• New IPCC Tier-1 Global Biomass Map for the Year 2000 (Ruesch and Gibbs 2008; 

http://cdiac.ornl.gov/epubs/ndp/global_carbon/carbon_documentation.html). This used the 

IPCC Tier 1 methodology (created using the IPCC Good Practice Guidance for reporting 

national greenhouse gas inventories) and GLC2000 land cover data to provide a new global 

map of biomass carbon stored in above and belowground living vegetation at 1 km 

resolution. 

• The National Biomass and Carbon Dataset (NBCD2000) (Woods Hole Research Center, 

WHRC; http://whrc.org/publications-data/datasets/national-biomass-and-carbon-dataset/). 

This provides basal area-weighted canopy height, aboveground live dry biomass, and 

standing carbon stock for the year 2000 at 30 m resolution for the conterminous United 

States. NBCD2000 is based on a combination of data from the USDA Forest Service Forest 

Inventory and Analysis (FIA), the 2000 Shuttle RADAR Topography Mission (SRTM) and 

Landsat-7/ ETM+. This provides a model for how national forest inventory plot data can be 

combined with remote sensing data to produce maps of biomass. 

• National Level Carbon Stock Dataset (Tropics) (WHRC; Baccini et al., 2012). This provides 

maps of above-ground live woody biomass at 500 m resolution for the tropics 2007-2008. A 

combination of field measurements and space-borne LIDAR observations at 70 m spatial 

resolution from the Geoscience Laser Altimeter System (GLAS) instrument on board the Ice, 

Cloud and land Elevation Satellite (ICESat), and optical MODIS imagery at 500 m spatial 

resolution, were used.  

• JPL Carbon Maps (Saatchi et al. 2011; http://carbon.jpl.nasa.gov/). The Jet Propulsion 

Laboratory of NASA and the California Institute of Technology provide a biomass product 

similar to that of the WHRC National Level Carbon Stock Dataset. The maps provide forest 

above-ground carbon and biomass for sub-Saharan Africa, the Americas south of latitude 30° 

N, and South-East Asia and Australia between the latitudes of 40° N and 30° S at 1 km 

resolution. Point-based estimates of biomass generated from a combination of field data 

and space-borne LIDAR data from ICESat/GLAS were extrapolated using optical data from 

MODIS and RADAR data from SRTM and QuickSCAT. 

• Integrated pan-tropical biomass map (Avitabile et al. 2016). This combined two existing 

datasets of vegetation aboveground biomass (Saatchi et al. 2011; Baccini et al. 2012) into a 

pan-tropical map at 1-km resolution using an independent reference dataset of field 

observations and locally calibrated high-resolution aboveground biomass maps, harmonized 
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and upscaled to 14,477 1-km estimates. The data are available at: 

http://www.wur.nl/en/Expertise-Services/Chair-groups/Environmental-Sciences/Laboratory-

of-Geo-information-Science-and-Remote-Sensing/Research/Integrated-land-

monitoring/Forest_Biomass.htm 

A global biomass map is currently being developed by the GlobBiomass project 

(http://globbiomass.org/products/global-mapping/). The map will have specified requirements to 

spatial resolution (150-500 m) an accuracy of 70% or better with the reference year 2010. The map 

will be based on the combination of several SAR, LiDAR and optical datasets and established 

algorithms for the retrieval of forest variables at regional to continental scale.  

6 .3.2  National  products  

There is potential for integration of ground-based data with remote sensing to estimate biomass at 

local level. Airborne LIDAR, calibrated using ground based estimates of biomass, can be used to 

produce reliable high resolution biomass maps, and can be cost effective in some national 

circumstances, such as where terrain makes access difficult (GFOI 2016). Examples of how to use 

airborne LIDAR data together with ground measurements to estimate biomass are provided by 

Asner et al. (2010) (IPCC-compliant estimates of carbon stocks and emissions in the Peruvian 

Amazon); Nelson et al. (2004) (biomass estimation in Delaware, United States); Næsset et al. (2013) 

(biomass change estimates in boreal forests, Norway); and Lefsky et al. (1999) (biomass estimation 

in deciduous forests in Maryland, United States).  

Under the GlobBiomass project, subnational mapping is underway, where biomass stock and change 

maps with better spatial resolution than the global reference map (50 – 150 m) and with a multi 

temporal approach comprising three epochs: 2000 or 2005, 2010 (reference year), and 2015 will be 

produced. The regional (subnational) maps will aim for an overall accuracy of at least 80% in five 

different regional mapping sites:  

• Mexico (tropical-woodland; http://globbiomass.org/products/regional-mapping/regional-

biomass-mapping-mexico/)  

• Poland (temperate zone; http://globbiomass.org/products/regional-mapping/regional-

biomass-mapping-poland/) 

• Sweden (boreal zone; http://globbiomass.org/products/regional-mapping/regional-biomass-

mapping-sweden/) 

• Indonesia/Kalimantan (tropical zone; http://globbiomass.org/products/regional-

mapping/regional-biomass-mapping-indonesiakalimantan/)  

• South Africa (savanna mosaic; http://globbiomass.org/products/regional-mapping/regional-

biomass-mapping-south-africa/).  

6 .3.3  Limitat ions 

One limitation of the space-borne LIDAR data used to derive several of the biomass products 

described above is that there is a data gap in observations between 2009 and 2015, and as yet, 

replacement missions (ICESat-2 scheduled launch 2017; GEDI scheduled launch 2019) have not been 

launched. Another limitation of space-borne LIDAR is that, while it is possible to estimate tree height 

from ICESat/GLAS data which in turn can be regressed to obtain biomass estimates (Sun et al. 2008), 

estimating tree height from GLAS data is less straightforward compared to using airborne, small 
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footprint LIDAR data. On slopes, topographic information is required to estimate tree height because 

of the elliptical shape of the GLAS footprint (Lefksy et al. 2005). 

Synthetic Aperture RADAR (SAR) for biomass estimation has demonstrated potential in the 

estimation of aboveground biomass, and is being used in the GlobBiomass project. However, 

currently there are limitations arising from 1) rapid saturation of the signal at low aboveground 

biomass stock for some bands, 2) terrain, 3) rainfall and soil moisture effects, 4) localised algorithm 

development (single biome or mono-specific stands), and 5) lack of consistency in estimates as a 

function of sensor parameters (GFOI 2016). Consequently, estimation of aboveground biomass using 

SAR has been more successful in temperate forests than in tropical forests, due largely to fewer 

species and lower biomass (Castro et al. 2003). 

6.3.4  Deriving biomass carbon stocks from Earth Observat ion maps  

Some caution should be exercised in applying biomass C stocks from biomass maps which have been 

derived from spectral indices such as the Normalized Difference Vegetation Index (NDVI). These 

estimates are unlikely to be sufficiently independent of the land productivity sub-indicator which 

uses NDVI to infer NPP.  

7 Comments and Limitations 

Lorenz and Lal (2016) reviewed the potential of SOC stock as an indicator for land and soil 

degradation, and assessed its relevance and feasibility as an indicator for the implementation of the 

SDGs. They highlighted that several associated challenges would need to be addressed before SOC 

stock can serve as a globally relevant and feasible indicator for monitoring degradation in the 

context of the SDG framework. These included: the limited availability of datasets on SOC stock at 

national and regional levels, the uncertainties associated with the suitability of existing data for 

monitoring SOC stock changes, and insufficient quantitative evidence linking SOC stock changes to 

the various land and soil degradation drivers and processes.  

The defined monitoring period is from 2016-2030, however, intermediate monitoring points at an 

interval of 4-5 years have been suggested (Orr et al. 2017). For land cover, global data sets are now 

available annually. However, in the context of SOC change, this frequency is likely to be too short to 

detect change where an on-ground monitoring approach is used, because under current land 

management practices, it would be difficult to register change in less than 10 years (Smith 2004).  

Measurements of carbon stocks are subject to various sources of error and the observed data may 

give a falsely positive or negative reflection of the true conditions. This could lead to land being 

falsely classified.  

Using IPCC defaults requires soil types to be used for stratification. These are the seven default IPCC 

soil types defined in IPCC 2006, Annex 3A.5. For a national approach using country-specific defaults 

and the default equations (Tier 2), it will be hard to get agreement on what soil classification system 

to use. There are problems with the existing global maps of soil types including their very broad 

scale. Further, soil types are not necessarily highly covariant with soil carbon stocks.  
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