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Executive Summary 

This good practice guidance document (GPG) describes methods to measure degradation in Land 

productivity for reporting on UN Sustainable Development Gola (SDG) 15.3.1: The proportion of 

degraded land over total land area. Land productivity is the biological productive capacity of the 

land, the source of all the food, fibre and fuel that sustains humans.  This can be measured at local to 

global scales using satellite remote sensing and indices of net primary productivity (NPP) of 

vegetation.   

The method recommended for this assessment is modified the method proposed for the World Atlas 

of Desertification (Ivits and Cherlet 2016).  Methods are presented in three Tier level options, with 

the complexity and rigour of analysis increasing in each higher Tier level.  

The recommended primary dataset is Normalised Difference Vegetation Index (NDVI) in the 

Moderate Resolution Imaging Spectrometer (MODIS) MOD13Q1 data product.  An alternative in Tier 

1 is to use MODIS MOD17A3 modelled NPP product which shows estimates of NPP per year and 

which simplifies part of the processing stream.  However, some loss of accuracy and local relevance 

is likely to occur when using the MOD17 data. Tier 2 includes the use of potentially higher resolution 

and more nationally relevant datasets, and involves the use of third party software to calculate 

annual NPP metrics from time series image data during the growing season each year.  Calibration of 

the annual NPP measurements to account for variations in moisture availability is required for all 

datasets. Tier 3 is achieved by calibrating and validating annual NPP estimates against other data 

sources including field samples.   

Degradation is calculated at the pixel scale based on three metrics calculated from the annual NPP 

estimates:  

1. the trajectory slope of growing season NPP over time 

2. Performance, which measures local productivity relative to other similar vegetation types in 

similar bioclimatic regions throughout the study area, and 

3. State, which compares the current productivity level in a given area to historical 

observations of productivity in that same area.   

These three metrics enable degradation to be identified in areas where productivity may be 

increasing over time but remains degraded in terms of productivity levels, for example.  Areas of 

degradation have either a significantly negative trajectory slope in annual NPP, or in areas where the 

trajectory slope is not significantly negative a combination of low productivity.  A ‘support class’ 

analysis is used to identify which degradation metric or combination of metrics indicates 

degradation in each pixel.  

Datasets, and processing and analysis methods suitable for assessing land productivity degradation 

are developing rapidly.  General guidance on dataset and productivity index selection, options for 

climatic calibration and reporting recommendations are provided.   
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1 Definition and Concepts 

Land productivity is the biological productive capacity of the land, the source of all the food, fibre 

and fuel that sustains humans.  Land productivity points to long-term changes in the health and 

productive capacity of the land and reflects the net effects of changes in ecosystem functioning on 

plant and biomass growth (United Nations Statistical Commission 2016). 

Land productivity can be measured across large areas from satellite Earth observations of net 

primary productivity (NPP). NPP is the net amount of carbon assimilated after photosynthesis and 

autotrophic respiration over a given period of time (Clark et al. 2001) and is typically represented in 

units such as kg/ha/yr.  Satellite remote sensing is the most effective way to measure NPP in fine 

detail at National scales.  NPP is not directly measured by Earth observation sensors but is estimated 

from known correlations between the fraction of absorbed photosynthetically active radiation 

(fAPAR) and plant growth vigour and biomass. There are many ‘vegetation indexes’ that can be 

calculated from image data which have been shown to be effective surrogates for fAPAR and highly 

correlated with NPP.  These indexes highlight spectral wavelengths associated with aspects of plant 

cover, biomass and/or growth vigour.  Each index is better suited to some landscapes and vegetation 

over types more than others.   

For the purposes of reporting on SDG Indicator 15.3.1 it is not necessary to quantify the magnitude 

of change in NPP in units of biomass, only to know whether land productivity is increasing or 

decreasing, and whether the level of productivity is below ‘normal’.   

Productivity index is the algorithm used to measure land productivity levels from image data.  One 

of the most commonly used surrogates of NPP is the Normalised Difference Vegetation Index (NDVI; 

Tucker 1979).  The NDVI is a normalised ratio of near infra-red (NIR) wavelengths centred around 

800 nm wavelength (eq 1), which are typically strongly reflected by live green vegetation, and red 

wavelengths centred around 650 nm wavelength which are within the photosynthetically active 

range of the spectrum and are typically strongly absorbed by live green vegetation.  The general 

formula is: 

���� =	
��	
��

��	���
          (1) 

NDVI values are unitless and range from -1 to +1.  Many studies have demonstrated a strong 

correlation between NDVI, plant cover, biomass and growth vigour.  NDVI is recommended for this 

assessment unless an alternative productivity index is demonstrated to be more suitable.  

The NDVI is the most widely used and best known spectral indicator of land productivity.  Limitations 

of the NDVI are its sensitivity to variations in soil background conditions, and its tendency to 

saturate at high cover and biomass levels.  This can reduce accuracy where plant cover or biomass is 

very high (tropical rainforest) or very low (arid savannah).  The NDVI is recommended for use unless 

the use of an alternative is justified.  Some of the alternatives to NDVI are described in Section 5.3.  

Land degradation is the reduction or loss, in arid, semi-arid and dry sub-humid areas, of the 

biological or economic productivity and complexity of rainfed cropland, irrigated cropland, or range, 

pasture, forest and woodlands resulting from land uses or from a process or combination of 

processes, including processes arising from human activities and habitation patterns. 

Regardless of the processing method used, degradation should always be interpreted from the 

available data in the context of local and in-situ knowledge about conditions in each region.   
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2 Introduction 

The 47
th

 session of the United Nations Statistical Commission agreed to a draft global indicator 

framework as a starting point to review progress towards SDG targets. The UN Convention to 

Combat Desertification (UNCCD) has taken responsibility for developing a framework for monitoring 

this target 15.3 and has convened an Inter-Agency and Expert Group (IAEG) that has proposed a sole 

indicator for indicator 15.3.1, the “Proportion of land that is degraded over total land area.” They 

also proposed three sub-indicators that can be monitored by countries and used in concert to 

quantify the proportion of degraded land. These sub-indicators are: 

1. Land cover 

2. Land productivity 

3. Carbon stocks (above and below ground) 

Each of these sub-indicators responds to different elements of degradation:  Land Cover addresses 

the state and changes in the structure and composition of the landscape from natural events and 

human activities.  Carbon Stocks addresses issues of carbon sequestration, plant biomass and factors 

potentially affecting soil fertility.  The Land Productivity indicator measures human impacts on the 

state, dynamics and performance of plant growth.   

Measuring changes in land productivity at national to global scales is a highly active area of research 

and one where datasets and analysis methods and tools are developing rapidly. Consequently, there 

is an increasingly wide range of options that can be used to address each of the required processing 

steps.  While Nations should strive to report changes in land productivity at the highest level of 

detail and rigour, Nations differ in their skills and resources to facilitate analyses, their access and 

availability of data sets and their land cover characteristics, making some methods more suitable 

than others.   

2.1 Existing productivity degradation assessment methods 

One of the earliest proposed methods for mapping map land degradation globally (Bai et al. 2008) 

calculated trends in the trajectory of land productivity using coarse resolution image data, and 

calibrated climate influences using a Rainfall Use Efficiency (RUE) analysis (Le Houerou 1984).  

Amongst the limitations of this method are that it is tailored to regions where rainfall is the primary 

driver of productivity, making it less well suited to tropical or very sparsely vegetated regions 

(Wessels 2009).  

Other aspects of productivity have also been considered in similar analyses.  Wessels et al. (2008) 

used a local NPP scaling method (Prince 2004) to assess the productivity performance of vegetation 

relative to other vegetation in similar land capability units (areas of similar topographic, edaphic and 

climatic conditions).  Similar assessments can be conducted for a given location over time, as an 

indicator of the current state of vegetation productivity.   

2 .1.1 World At las  of  Desert i f icat ion 

The recently proposed method for assessing land productivity degradation for the World Atlas of 

Desertification (Ivits and Cherlet 2016) was developed by the European Commission’s Joint Research 

Centre (JRC) to measure land degradation at global scales (referred to hereafter as the WAD 

method).  The WAD method uses two NDVI data sources (Figure 1): the Global Inventory Monitoring 

and Modeling System (GIMMS) 3G NDVI dataset (http://ecocast.arc.nasa.gov/data/pub/gimms/ 

3g.v0/) (Pinzon and Tucker 2014) and the Satellite pour l’Observation de la Terre (SPOT) VGT NDVI 
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dataset (http://www.vgt.vito.be/).  These have relatively coarse pixel sizes of 8 km and 1.15 km 

respectively, but they have a high capture frequency and long archives of historical data that are 

useful for identifying productivity trajectory at broad scales.   

 
 

Figure 1.  Scheme for calculating land cover productivity dynamics for the World Atlas of Desertification (Ivits and Cherlet 

2016). 

Productivity is assessed in terms of trajectory, performance and state.  These three parameters can 

be used to identify degradation in areas of increasing productivity trend (trajectory) but low 

productivity compared to other regions of similar land cover type with similar climatic conditions 

(performance), or compared to the historical range of productivity levels for that location over time 

(state).   

Compared to other published methods, the WAD method includes more non-parametric and 

qualitative analyses, which provides opportunities for countries to interpret the calculated 

degradation extents in the context of local knowledge and Nation-specific conditions.  While the 

WAD method prescribes particular datasets and methods, some of these are best suited to certain 

land cover conditions and scales of analysis.  For example, the WAD method includes a calculation of 

many phenological parameters that enable the landscape to be stratified into Ecosystem Functional 

Units (sensu Ivits et al. 2013), which is one basis upon which relative productivity performance can 

be measured across the landscape.  In practice, there are a range of alternative ways to define the 

spatial units within which land productivity can be reported, some of which are discussed in more 

detail in the Indicator level GPG for this SDG.  The methods presented in this guide are therefore 

largely based on the WAD method, but also recommends certain analyses which are not included in 

the WAD method.  
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Many options are available for conducting certain aspects of this analysis, including productivity 

datasets of different resolution, coverage and frequency, a range of methods for highlighting 

degradation in ‘noisy’ time series datasets.  Options for the use of other datasets and methods that 

may be suitable in other regions are identified in the relevant sections below, and described in more 

detail in later sections of this report.   

3 Method of Computation 

3.1 Methodological T iers 

This good practice guidance document (GPG) provides guidance on how countries can measure 

changes in land productivity to assess degradation.  This process is founded on the WAD method and 

is comprised of six main processing steps (Table 1).   

Table 1.  Processing steps, recommendations and options for assessing land productivity degradation 

 Processing step Recommendations Options 

Report 

Section 

Select image dataset MODIS MOD17A3 modelled 

annual NPP 

MODIS MOD13Q1 NDVI (all Tiers) or vegetation 

index from higher resolution National datasets 

(Tiers 2 & 3) 

3.2 

Calculate growing 

season metrics 

From time series using TIMESAT 

(all Tiers, not required if using 

MOD17A3 modelled NPP) 

From dry or cloud-free season, or coincident 

with time of sampling each year (Tiers 2 & 3).   

3.3 

Calibrate for moisture 

availability 

Water use efficiency using 

MOD16 evapotranspiration (all 

Tiers) 

Many alternatives (see Section 5.4) 3.4 

Calculate productivity 

metrics 

Trajectory slope, state and 

performance 

All Tiers 3.5 

Calculate degradation 

metrics 

Significance tests for 

productivity metrics 

All tiers 3.6 

Validate productivity 

estimates 

Required for Tier 3 only Collect Earth, flux tower or destructive sample 

collection 

3.7 

 

Consistent with the IPCC guidelines and good practice guidance there are three tier levels of 

processing, with the level of accuracy, detail and processing complexity increasing at each tier level.  

Tier 1 uses global datasets or a model of annual net primary productivity (NPP) and is intended for 

use where data availability or processing capacity is limited.  Tiers 2 & 3 use the NDVI or an 

alternative vegetation index calculated from a global or national-scale datasets.  This improves the 

representativeness of national NPP estimates over the Tier 1 method but involves additional 

datasets and processing.  Tier 3 includes validation of NPP estimates against additional sources of 

information, including field samples, to further improve the accuracy of degradation assessment.   

3.2 Select an image dataset 

A large number of satellite image datasets are available at no or very low cost that are well suited for 

assessing land productivity at global to National scales (Table 2).  The key criteria for selection of a 

dataset are that it should have an archive of historical data from which baseline conditions can be 

calculated (ideally spanning ten years or more), coverage of the entire study area, pixels small 
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enough to represent productivity at the desired spatial grain and it should have the spectral bands 

required to calculate the required productivity indices.  Some of the considerations and trade-offs in 

selecting an image dataset are described in more detail in Section 5.   

Table 2.  Low or no-cost satellite sensors and data streams utilized for land surface phenology studies (modified from - 

https://phenology.cr.usgs.gov/ndvi_avhrr.php). The MODIS MOD13Q1 NDVI product is recommended unless an alternative 

index is justified 

Sensor Satellite Frequency Data Source Data Record 

Spatial 

Resolution(s) Time Step 

AVHRR NOAA series Daily USGS/EROS 1989-present 1 km 1-week,  

2-weeks 

AVHRR NOAA series Daily GIMMS 1982-2015 8 km Twice 

monthly 

AVHRR/ 

MODIS 

- Daily VIP30 (EVI2) 1981-2014 5.6 km Monthly 

Vegetatio

n 

SPOT 1-2 days VITO 1999-present 1.15 km 10-day 

MODIS Terra 1-2 days MOD17 NPP 2000 - 

present 

1 km Annual 

MODIS Terra/ 

Aqua 

1-2 days MOD13 vegetation 

index 

2000-present 250 m, 500 

m, 1 km 

8-day,  

16-day 

MSS Landsat 1-5 18 days USGS/EROS 1972-1992 79 m Distribute

d by scene 

TM Landsat 4-5 16 days USGS/EROS 1982-2011 30 m Distribute

d by scene 

ETM+ Landsat 7 16 days USGS/EROS 1999-present 30 m Distribute

d by scene 

OLI* Landsat 8 16 days USGS/EROS Feb 2013-

present 

30 m Distribute

d by scene 

MSI* Sentinel 2 5 days (from 

March 2017) 

https://sentinel.esa.int/

web/sentinel/home 

Jun 2015-

present 

10 m  

(VIS & NIR) 

Distribute

d by scene 

*Due to the relatively recent launch of these satellites their archive of historical images may not be sufficient to calculate 

baseline conditions.  

We recommend using the NDVI dataset available in the MODIS MOD13Q1 vegetation index product.  

This is pre-calibrated from surface reflectance data and includes Normalised Difference Vegetation 

Index (NDVI) at 250 m pixel resolution.  These datasets are provided as composited 16-day product 

since the year 2000 (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_ 

table/mod13q1).  

An alternative at Tier 1 is to use a modelled global NPP product which can simplify the process of 

calculating annual NPP metrics.  We recommend version 55 (or higher) of the MODIS MOD17A3 

annual NPP estimates produced by the Numerical Terradynamic Simulation Group (NTSG) at the 

University of Montana (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_ 

products_table/mod17a3).  Pixel values in this dataset represent kilograms of carbon per square 

metre, averaged at 1km pixel resolution over each calendar year since 2000 (Running et al. 2004).  

The advantage of this dataset is that it simplifies the process of calculating annual NPP.  However, 

there are a range of disadvantages associated with the use of a model rather than an index from a 

time-series dataset, which are discussed in Section 5.3.1.   
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Note that while Landsat 8 Operational Land Imager (OLI) and Sentinel 2 Multi Spectral Imager (MSI) 

are relative high resolution and well suited to productivity assessment at National scales, their 

relatively recent launch means that the archive of historical images is short and unlikely to be 

suitable for calculating baseline conditions.  Productivity indices can be calibrated between these 

sources and those with longer archives, however, as described in Section 5.2.  

3.2.1 Select  a  productivity index 

We recommend using the MODIS MOD13Q1 NDVI unless the use of an alternative index or data 

source is justified.  The NDVI has a long history of use, its limitations are well understood and it is 

well suited to assessing vegetation dynamics under most cover and biomass conditions.  Reasons to 

use an index other than NDVI may include: 

1. Limited data access or processing capability makes it necessary to use the MODIS MOD17A3 

modelled annual NPP data 

2. NDVI is less well suited to National land cover conditions than an alternative productivity 

index, such as in regions of very high or very low biomass or foliar cover 

3. Higher resolution climate, land cover, productivity and/or field validation data are available 

4. The existence of new or alternative datasets and analysis methods that are considered 

superior to those proposed in this document 

A range of alternative productivity indices and models for assessing productivity have been 

developed that may be better suited to vegetation conditions in some regions or nations.  Several of 

these are reviewed in more detail in Section 5.3.  The choice to use an index other than NDVI should 

be justified in the report.  

3.3 Calculate growing season metrics  

Observations of land productivity integrated over the growing season have been highly correlated 

with end of growing season biomass (Fensholt et al. 2013) as well as mid-season (peak) biomass in 

rangeland areas (Moran et al. 2014).  One of the advantages of using time series data is the ability to 

extract productivity observations from a specific period such as the growing season.  

The freely available TIMESAT software (http://web.nateko.lu.se/timesat/timesat.asp) includes 

features for smoothing and calculating many parameters from satellite time series data (Eklundh and 

Jönsson 2015).  The most important metric is the including the integral (sum) of NDVI values during 

the growing season (iNDVI) equivalent to region h in Figure 2.   

The growing season is most easily identified in temperate regions where there is a pronounced 

seasonal change in productivity levels throughout the year.  The growing season may vary each year, 

and can be defined in a number of ways: the date on which NDVI reaches 30% of the maximum NDVI 

either side of the NDVI peak (Fensholt et al. 2013), or the minimum NDVI plus 10% of the pre-season 

minimum for season start, and the minimum NDVI plus 10% of the post-season minimum for season 

end (Ma et al. 2015) have been used.   

Such a pronounced cyclical variation in productivity may not occur in tropical regions or areas with 

very low vegetation cover however. In these cases the assessment season each year can be defined 

based on the expected period of highest biomass each year, the period of lowest cloud cover, or an 

arbitrary period chosen to coincide with field data collection (for Tier 3 methods in particular).  

Ideally, the assessment period should occur at approximately the same time each year, and/or 

represent growing conditions that are as similar between assessments periods as possible.  
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TIMESAT also includes features to smooth noise in the time series, such as from missing 

observations or cloud cover (red line in Figure 2).  Smoothing the data in this way is important to 

maximise the comparability of NPP measurements between years, which may include more or fewer 

observations than others. Gaps in the data record should be filled using a cubic convolution filter 

calculated through the missing value’s eight nearest neighbours.  Ivits and Cherlet (2016) used an 

iterative 4
th

 order polynomial Savitzky-Golay filter with a 50-day window, while Brioch et al., (2014) 

used a Savitzky-Golay filter with a 15 time-step window.   

 

Figure 2.  Some of the seasonality parameters generated in TIMESAT: (a) beginning of season, (b) end of season, (c) length 

of season, (d) base value, (e) time of middle of season, (f) maximum value, (g) amplitude, (h) small integrated value, (h+i) 

large integrated value (source http://web.nateko.lu.se/timesat/timesat.asp?cat=0). 

The smoothing function should be iteratively adjusted to minimise the smoothing impact on existing 

good observations, while also sufficiently smoothing extreme values responding to factors other 

than productivity changes.  Considerations in setting smoothing parameters should also include 

differences in the rate and magnitude of rainfall response between vegetation communities such as 

herbaceous and tree vegetation.   

This step is not necessary if the MODIS MOD17A3 modelled NPP dataset is being used.  The 

processing steps described below are required for all datasets. For convenience in the following 

sections, NDVI is used to refer to any index or metrics of NPP calculated from an image dataset.  

3.4 Calibrate for moisture availability 

Moisture availability has been shown to be highly correlated with changes in NPP, especially in semi-

arid areas where water is the limiting growth factor (Fensholt and Rasmussen 2011; Wen et al. 2012; 

Wessels et al. 2007).  Separating degradation effects from other sources of variation in productivity 

observations is one of the main technical challenges, and one of the most contentious areas of 

research associated with this analysis.  Several methods to calibrate time series images to minimise 

the influence of climatic or seasonal factors have been proposed, each of which may be suitable only 
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in certain vegetation types, climatic regions or and for detecting only certain types or magnitudes of 

degradation.  Some of the most commonly used or best developed climate calibration methods 

including their application, strengths and weaknesses are described in Section 5.4.  

We recommend calibrating ����� measurements against evapotranspiration (��), which is defined 

as precipitation minus the water lost to surface runoff, recharge to groundwater and changes to soil 

water storage (Ponce-Campos et al. 2013).  A range of global ��datasets are available including the 

MODIS MOD16 dataset (http://www.ntsg.umt.edu/project/mod16) which reports ��at 8-day, 

monthly and annual intervals.   

ET observations should be integrated from the time series data over the same period as the 

productivity observations each year (���).  Calibration is performed by calculating the ratio of 

����� to ��� indicates the water use efficiency (WUE) of vegetation (Ponce-Campos et al. 2013).  

The method for calculating WUE corrected ����� (������) per year is: 

������ =
�����

���
          (2) 

where ����� is the NDVI integrated over the growing season or relevant period each year, and iET is 

ET integrated over the same period.   

3.5 Calculate productivity metrics  

3.5.1 Trajectory slope 

Trajectory slope indicates the trend of productivity over time.  Productivity trajectory is calculated by 

fitting a robust, non-parametric linear regression method such as the Thiel-Sen median (Ivits and 

Cherlet 2016), which can be implemented using the ‘mblm’ package in R (https://cran.r-

project.org/web/packages/mblm/mblm.pdf) or an alternative across the annual iNDVIw values for 

each year.   

The Mann-Kendall ‘z’ score can calculated using the ‘trend’ package in R (https://cran.r-

project.org/web/packages/trend/trend.pdf) and used to determine trend significance (Onyutha et 

al. 2016).  Positive z scores indicate a trend of increasing productivity and negative scores indicate 

decreasing productivity.  The significance of trajectory slopes at the P=0.05 level, calculated across 

more than 8 data points, should be reported in terms of three classes:  

•  Z score ≥ 1.96 = “Improving” 

• Z score ≤ -1.96 = “Degrading” 

• Z score > -1.96 AND < 1.96 = “Not Significant” 

This assessment should be accompanied by a scatter plot Figure showing the annual NPP 

measurements per year, with a trend line fitted and slope indicated.  This will aid in the 

interpretation of trends and their significance in relation to the variability of annual NPP in the time 

series.  An example is shown in Figure 3 
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Figure 3.  Example of NPP Figure to be included in the trajectory slope reports 

3.5.2 State and state  change 

Productivity state represents the level of productivity in a given spatial unit (vector region or pixel 

for example) compared to observed productivity levels for that spatial unit over time.  Productivity 

state can be interpreted as an indicator of relative standing biomass (Ivits and Cherlet 2016).   

Classify ������values during the baseline period into 10 decile classes using the unsupervised 

ISODATA classification.  These become the baseline ������ classes. Productivity state change is 

assessed by comparing ������ in the assessment year to the baseline ������ classes.  Productivity 

state change can be reported in terms of three classes relative to the baseline productivity state: 

1. High – observed productivity in baseline ������ classes 9 or 10 

2. Moderate – observed productivity in baseline ������ classes 6,7 or 8 

3. Low – observed productivity in baseline ������ classes 1,2,3,4 or 5 

3.5.3 Performance 

Productivity performance compares local productivity to productivity in the same bioclimatic regions 

across the study area in the assessment year.  Bioclimatic region types describe areas with similar 

productivity potential due to similarities in moisture availability, soil and vegetation characteristics 

(see Ivits et al. (2013) and Wessels et al. (2008) for examples of stratifying the landscape for this 

productivity performance assessment. Bioclimatic regions may be classified from the land cover 

classes used to assess the land cover and land cover change sub-indicator, in combination with 

climate and moisture availability data such as Koppen Zones 

(http://people.eng.unimelb.edu.au/mpeel/koppen.html) or the MODIS MOD16 dataset 

(http://www.ntsg.umt.edu/project/mod16) used for WUE correction. Alternatively, the Food and 

Agriculture Organisation (FAO) of the United Nations produces Agricultural Suitability and Potential 

Yields spatial data through their Global Agro-Ecological Zones (GAEZ) programme 

(http://www.fao.org/nr/gaez/about-data-portal/agricultural-suitability-and-potential-yields/en/).   
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The WAD method recommends stratifying the landscape into ‘functional units’ based on a large 

number of uncorrelated phenological and productivity metrics calculated from the productivity time 

series (Ivits and Cherlet 2016; Ivits et al. 2013).  Parameters calculated from the time series 

described the timing and productivity patterns during the growing season, and include the start and 

end dates of the growth season, the date of maximum productivity, the productivity level at season 

commencement and maximum productivity level amongst others.  A principal component analysis of 

these variables, followed by an unsupervised classification is then used to stratify the landscape.  

The resulting land units are highly correlated with the GlobCover land cover classes 

(http://due.esrin.esa.int/page_globcover.php), though Ivits et al. (2013) argue that defining 

bioclimatic regions based on growing season parameters is more relevant to analysis of productivity 

dynamics.   

In order to identify bioclimatic regions using the WAD method, a larger number of parameters will 

need to be calculated from the growing season each year.  More details on the WAD method 

approach for identifying bioclimatic regions is presented in Ivits and Cherlet (2016) and Ivits et al. 

(2013).   

Within each bioclimatic region, calculate the 90
th

 percentile of productivity index values.  This level 

will be used to indicate the maximum productivity level (NPPmax) that can be achieved within each 

cover class.   Productivity performance is then calculated as: 

������ =
�������	����� 

!"%	����� 
         (3) 

NPPmax Values close to 1 represent pixels in which productivity is close to the highest level for that 

land unit in that year.  Performance values less than 0.5 indicate regions where productivity levels 

are low compared to other vegetation in the same bioclimatic region.   

3.6 Calculate degradation metrics 

Productivity metrics calculated from the baseline period can be used to identify areas of pre-existing 

degradation, and they also provide the context for comparing current conditions to identify new 

degradation.   

The baseline period for assessment of SDG 15.3.1 is between the years 2000 to 2015.  Consideration 

should be given to whether conditions during the baseline period are representative of ‘normal’ 

productivity conditions.  In Australia for example, the millennium drought extended from the late 

1990s to 2010 across southern part of the continent, and included some of the most severe rainfall 

and temperature anomalies on record.  This should be taken into consideration when comparing 

contemporary observations with the baseline conditions. This GPG recommends calculating 

productivity trajectory slope, performance and state, and the baseline measurements is calculated 

and used differently in relation to each of these parameters.   

3 .6.1 Trajectory slope 

• Existing degradation based on trajectory slope will be identified by a significant negative 

trajectory slope of a robust regression line fitted across annual ������ measurements over 

the entire baseline period (2000-2015) as assessed using the Mann-Kendall Z score (z= ≤ -

1.96) 

• Emerging degradation will be identified by a significant negative s trajectory slope over the 

recent 10 years of data including the last 5 years of the baseline period and the recent 5 

years of newly measured data using the Mann-Kendall Z score (z= ≤ -1.96) 
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3.6.2 Performance 

• Existing degradation based on productivity performance will be identified by a mean 

productivity performance in the baseline period of less than 50% of the potential maximum 

(90
th

 percentile of ������ values each year) 

• Emerging degradation will be identified based on productivity in the lowest 50% of the 

potential productivity range in that bioclimatic zone 

3.6.3 State and state  change 

• Existing degradation based on productivity state will be identified using a 3 step process: 

1. Calculate ‘early epoch’ average productivity decile classes from 2000-2010 (11 

years) 

2. Calculate ‘late epoch’ average productivity from 2011-2015 (5 years) 

3. Pixels in which the productivity level has dropped by two or more decile classes 

between the early and late epochs will be identified as degraded for this metric 

• Emerging productivity will be identified by: 

1. Calculate average productivity across all baseline years (200-2015) 

2. Calculate average productivity state between 2016-2020 (repeated in 2021-

2025, 2026-2030) 

3. Pixels in which productivity state has decreased by two or more decile classes 

between the recent and baseline state classes will be identified as degraded for 

this metric 

3.7 Validate productivity estimates 

Validation of productivity estimates against additional sources of data provides the highest possible 

accuracy of productivity assessment and degradation identification when implemented in a 

statistically rigorous way.  Validation of remotely sensed predictions of NPP enables the uncertainty 

of predictions to be assessed, and provides an opportunity to calibrate NPP predictions to improve 

predictive accuracy or for the use of alternative vegetation indices.   

Validating remotely sensed predictions is a substantial field of research, and the required data varies 

with the spatial grain of the imagery being used, the range of NPP values likely to be encountered, 

cover conditions and the spatial extent over which predictions are being made.  Consequently, a 

detailed description of all facets of validation is beyond the scope of this document. 

There are a range of validation options available ranging from comparison with other correlated 

datasets to calibration against destructively sampled biomass data.  Conversion to units of kg 

C/ha/year by linear regression against the MOD17A3 datasets may assist in reporting the magnitude 

of productivity dynamics, but by itself is not a reliable calibration method due to the uncertainties 

described above.  

This section reviews some options, datasets and analytical methods for a range of validation 

methods that may be suitable for reporting on Indicator 15.3.1.   

3 .7.1 Col lect  Earth 

Collect Earth is a free and open source software package that facilitates the interrogation of high 

resolution image data using the Google Earth interface (http://www.openforis.org/tools/collect-

earth.html).  Collect Earth was developed to monitor forest cover and land cover change for the 

purposes of greenhouse gas emissions reporting.  Collect Earth can be used to validate conditions at 

selected sampling sites using Google Earth, BingMaps and Google Earth Engine interfaces.  This can 
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be especially useful to investigate areas of particular anomaly, and to identify the underlying causes 

of degradation.   

3 .7.2 Flux tower data 

Flux towers measure the exchange of carbon dioxide between plant canopies and the atmosphere 

and are a direct correlate with NPP at local scales (Running et al. 1999).  Fluxnet 

(https://fluxnet.ornl.gov/) maintains a global network of flux towers (Figure 4) many of which are 

aligned with national flux monitoring programs.   

Some examples of National flux tower programs include:  

• Australia: TERN (http://www.tern.org.au/NASA-partners-with-TERN-to-map-global-carbon-

bgp3623.html), OzFlux (http://www.ozflux.org.au/) 

• Korea:  KLTER (http://www.klter.org/emain.htm)  

• USA: NEON (http://www.neonscience.org/science-design/collection-methods/flux-tower-

measurements 

 

Figure 4. Fluxnet carbon flux tower locations as at October 2015 (source: https://fluxnet.ornl.gov/maps-graphics) 

3.7.3 Destruct ive  b iomass sample collect ion 

Validation of NPP estimates against destructive samples collected in the field, at the time of peak 

biomass, and coincident with image capture, provides the most rigorous assessment of NPP 

predictions.   

One of the most comprehensive guides to field validation of remotely sensed datasets is the 

AusCover Good Practice Guidelines report (http://qld.auscover.org.au/public/html/AusCoverGood 

PracticeGuidelines_2015_2.pdf).  This includes methods for assessing biomass in a range of land 

cover types including forests and woodlands, crops, pastures and grasslands (Schaefer 2015).   
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For accurate NPP validation it is important to coordinate the collection of field data with the date of 

peak biomass.  Some institutions have protocols to collect destructive biomass data for NPP 

assessment at the same time each year.  For example, Moran et al. (2014) integrated productivity 

observations from the commencement of the growing season to the first week in August, which is 

the annual period of field sample collection designed to coincide with the period of peak biomass in 

their study region.   

3.8 Combining metrics  to determine overall  degradation state 

Pixels showing degradation are those with:  

1. Existing degradation identified from the baseline period 

2. A significant negative trajectory slope in any combination of degradation metrics 

a. OR 

3. A slope that is not significantly negative with 

a. Degradation indicated in the productivity state change analysis 

AND  

b. Degradation indicated in the productivity performance analysis 

Degradation should be reported at the National scale as the area of degradation/total land area. 

Degradation probability should be calculated at the pixel scale and aggregated to the National scale 

for reporting.  The metric to report is the proportion of degraded land divided by total land area.   

3.9 Assessing degradation support c lass 

Measurements of biological indicators are subject to various sources of error and the observed data 

may give a falsely optimistic or pessimistic reflection of the true conditions.  A look up table can be 

used to classify the support for determinations of degradation based on the trajectory, state and 

performance metrics.  

In order to interpret the likelihood of results indicating false positive or false negative degradation, a 

lookup table is used to identify ‘support class’ combinations of metrics in each pixel (Error! 

Reference source not found.).  These classes can be used to review the combinations of metrics 

indicating degradation in each pixel, which can be used to support decisions around whether pixels 

are identified as degraded or otherwise.   

Table 3.  Lookup table indicating support class combinations of productivity metrics for determining a pixel as degraded.  

Pixels in support classes 1 to 5 show degradation.  Y is degradation identified in that metric.  N is not degraded in that 

metric. 

Class Trajectory State Performance Degraded 

1 Y Y Y Y 

2 Y Y N Y 

3 Y N Y Y 

4 Y N N Y 

5 N Y Y Y 

6 N Y N N 

7 N N Y N 

8 N N N N 
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The most dependable indicator of degradation is a significant negative trajectory slope because it is 

calculated over the entire time series and uses standardised statistical significance tests.  While 

together the performance and state metrics provide reasonable spatial (performance) and temporal 

(state) support for a determination of degradation, their assessment based on comparison of fewer 

years of data increases the potential for false positive or negative results, and it is not recommended 

to determine overall degradation status based on either a significant state or performance analyses 

alone.   

4 Rationale and Interpretation 

The aim of this document is to propose a set of methods for assessing land productivity degradation 

that can be used by all countries ranging from those with very few datasets and little remote sensing 

capability, to those with substantial and sophisticated productivity research programs.  Guidance on 

the methods and interpretation of results are presented in Method of Computation Section above.   

For the purposes of this report it is not necessary to calculate the magnitude of change in 

productivity, but only to know the extent and direction of productivity change.  For reporting of the 

extent and direction of change the unitless NDVI is suitable because of its simplicity, transferability 

between sensors, and because its characteristics of response to differences in plant growth vigour 

and biomass are well documented. The simplicity of its calculation, requiring only two spectral bands 

(red and NIR) means that it is able to be calculated from most Earth observation sensor data, and its 

robustness to a range of land cover conditions makes it highly suited as an indicator of changes in 

land productivity in many regions of the globe.  

Plant productivity fluctuates over time in association with seasonal and phenological cycles, and 

variations in climatic conditions including moisture availability. Land degradation is a human process, 

which necessitates the calibration of the observations to minimise the influence of variables other 

than degradation on the time series measurements.  One of the challenges to the simplicity of the 

Tier 1 methods is the lack of productivity indicators that are frequently updated and calibrated to 

minimise the influence of variations in moisture availability.  The water availability calibration is 

therefore recommended at all Tier levels.  Failure to calibrate for variations in moisture availability 

will reduce the sensitivity of the data to human induced degradation.  

With currently available datasets this sub-indicator can be calculated annually.  One of the objectives 

of this method, however, is to highlight sustained changes in productivity that are not associated 

with natural (climatic and hydrological) or managed (agricultural) changes in resource availability.  

Methods to assess the trajectory slope, productivity state and productivity performance in this 

document aim to indicate longer-term dynamics by incorporating longer time-series in the baseline 

calculations and the assessment of the metrics themselves.  In addition, the reporting frequency for 

Indicator 15.3.1. is every five years, which enables trends to be assessed over five productivity 

observations, reducing the influence of individual observations on the assessment of degradation.  

5 Sources and data collection 

5.1 Dataset selection guiding principles 

Data options and sources for each stage of this analysis have been described in the text above.  We 

recommend using the NDVI available in the MODIS Vegetation Indices product MOD13Q1 from the 
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Terra satellite and MYD13Q1 from the Aqua satellite.  This product includes NDVI at 250m pixel 

spacing over the entire globe, composited from surface reflectance calibrated daily observation over 

a period of 16 days to minimise cloud cover artefacts.  These data are available from February 2000 

to the present. Alternative data sources and/or vegetation indices may be preferred in certain land 

cover conditions or for other reasons, and the choice of alternatives should be justified in the report.  

Guiding principles for dataset selection in this analysis are shown in Table 4.  

Table 4.  Guiding principles for image dataset selection 

Attribute Recommendation 

Temporal 

resolution 

Time series datasets are required to assess land productivity change over time.  This is essential for 

measuring the range of productivity variability, the trajectory of land productivity, and also the 

baseline conditions from which change is measured in future.  Image datasets with long archives of 

frequently collected and consistent imagery provide the best opportunity to do this.  More frequent 

observations provide more information on productivity changes over time, but the ideal frequency of 

observation is a balance between data size and the rate of change of productivity.   

Spatial 

resolution 

Coverage of the entire Nation is required for comprehensive National scale analysis. Some datasets 

show the landscape in more detail (smaller pixel sizes) than others.  Large pixels reduce the size of 

datasets for a given extent of coverage but represent average reflectance over a large area, which may 

not be suitable in landscapes with very complex and contrasting productivity conditions.  Smaller 

pixels can better represent variability in fine-grained landscapes but there are disadvantages also: 

higher resolution datasets are larger for a given extent of coverage, smaller pixels may not encapsulate 

sufficient spatial variability to represent a useful average productivity, and higher resolution datasets 

require increased accuracy in locating field sampling locations.  Accurately locating your position in an 

image requires that the sum of the spatial errors in image registration and position location devices 

(GPS) should be less than 1 pixel.   

Spectral 

resolution 

The number of wavelength bands, their centre wavelengths and band width influence the sensitivity of 

a dataset to changes in productivity, and the range of productivity indexes that can be calculated from 

the dataset.  It is essential that datasets contain all the spectral wavelengths required to calculate the 

preferred productivity index.   

Cost Many image datasets are freely available and highly useful for assessing land productivity at national 

scales. Freely available datasets are available in a range of spatial, spectral and temporal resolutions.  

Very high resolution images including pixels less than about 10m x 10m in size are also available for 

purchase.  High resolution datasets do not typically have an archive of repeat coverage historical 

images.   

Ease of use Many image datasets are now provided in ‘analysis ready’ condition, which have been processed to 

minimise image artefacts associated with changes in illumination and atmospheric conditions, image 

detector sensitivity and/or topographic relief.  These datasets provide the most accurate 

representation of changes in land surface conditions over time.  Pre-processed vegetation index 

products are also provided from a range of sensors, and these are the simplest to use and interpret in 

terms of changes in land productivity. 

 

There are also trade-offs to be considered when using high resolution imagery for productivity 

assessments.  The advantages of higher resolution imagery include: 

• The ability to more finely stratify the imagery to show the distribution of features of 

interest, which can improve the accuracy and representativeness of area measurements, 

especially in spatially complex landscapes 

• Better representation of the range of productivity levels within the spatial features used for 

reporting degradation 

• Improved ability to identify spatial anomalies, existing degraded locations or reference sites 

for model validation 

The disadvantages include: 

• Larger data volumes for a given land area 
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• A smaller area of integration of land cover characteristics per pixel, which can complicate 

the analysis of productivity at the vegetation community level 

• The requirement for improved accuracy to locate field validation sites in the imagery.  

Accurate location within a raster image dataset requires that the sum of the spatial errors in 

image registration and positional location devices (GPS) should be less than 1 pixel 

5.2 Interpolating productivity measurements between sensors  

Given the short historical archive of some of the datasets identified in Table 2, and the continual 

emergence of new image datasets suitable for assessing productivity, methods to calibrate between 

datasets from different sensors may be required to provide continuity through time.   

Pixels in the highest resolution image (i.e. smaller pixels) should be aggregated to match the 

resolution of the larger pixels before comparison. A linear regression model between productivity 

measurements may be suitable where sufficient overlap exists between the datasets. It is also be 

possible to calculate regression models between wavelength bands in the source imagery, such as 

the red bands in MODIS (band 1) with the red band in Sentinel 2 MSI (band 4) in order to recalculate 

the productivity index from the source data if required.   

Pixels in the less-well calibrated image should be transformed to match the values in the better 

calibrated dataset where possible.  The MODIS MOD13 vegetation index datasets are regarded as 

being amongst the best calibrated (Yengoh et al. 2015).  Alternatively, two alternative datasets could 

be transformed to match the MOD13 values.  It may also be useful to interpolate the time series 

datasets to daily values before comparison.  More detail on the application and validation of the 

linear regression calibration method can be found in Reeves et al. (2015).   

5.3 Options for alternative land productivity indicators 

The WAD method measures phenological parameters and productivity levels using the Normalised 

Difference Vegetation Index (NDVI; Tucker 1979).  Many studies have demonstrated a strong 

correlation between NDVI and plant cover, biomass and growth vigour.  NDVI response is well 

understood for a range of land cover conditions and it can be calculated from a large number of 

satellite image datasets including those with the longest archive of Earth observation imagery.  In 

addition, by comparing spectral bands within each image, the NDVI overcomes many image 

calibration issues associated topography, atmospheric and illumination conditions, which makes it 

very consistent across large areas.   

A large number of alternative land productivity indices and datasets have been developed which 

may be more suited to certain land cover conditions than others.  Some of these alternatives are 

described below.  Ideally, productivity indices should be calculated from image data that have been 

processed to surface reflectance, which minimises the influence of atmospheric, illumination and 

detector sensitivity variations on pixel values.  Image data that are not calibrated to surface 

reflectance are more likely to introduce errors in the assessment of productivity state (due to the 

influence of these artefacts on the relative brightness of bands in each image) and comparisons of 

productivity between images.  

5.3.1 MODIS MOD17A3 global  NPP model  

The MODIS MOD17A3 data product (hereafter referred to as MODIS NPP) estimates the annual 

change in kilograms of carbon per square metre, averaged at 1km pixel resolution, integrated over 

each calendar year since 2000 (Running et al. 2004; Running and Zhao 2015).  This is the only 
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globally available, annually updated NPP dataset that is available at this time.  Use of this dataset 

simplifies the process of quantifying NPP in units that can be measured in the field, and this dataset 

has been used to convert NDVI units to biomass units in several studies (Yengoh et al. 2015).  

However, there are a range of trade-offs with this dataset that make calculating growing season 

productivity from time series data the preferred option.   

This model converts indices of fAPAR to estimated NPP using modelled parameters describing 

vegetation conversion efficiency (Ɛ) and climatic conditions (Running et al. 2004).  The MOD17 NPP 

models include a range of indicator and estimated parameters that have been calibrated to match 

global conditions (Running and Zhao 2015).  The uncertainties in each of the parameters accumulate 

in the model, and the data may not accurately represent local conditions at any particular location.   

Several studies have also demonstrated improved accuracy in relation to field validation data when 

satellite productivity observations are aggregated over all or a part of the growing season only, 

rather than over the full year (Fensholt et al. 2013; Ma et al. 2015).  Further, the calendar year may 

split growing seasons in some regions, particularly including the summer growing season in the 

southern hemisphere temperate regions.   

5 .3.2 Enhanced vegetat ion index  

One of the potential limitations of the NDVI is that it may be insensitive to changes in biomass or 

foliar coverage where the leaf area index (LAI), defined as half the total intercepting area per unit 

ground surface area (Chen and Black 1992), is high.  Estimates of the LAI at which loss of sensitivity 

of NDVI occurs range from two to three (Carlson and Ripley 1997) to five (Schlerf et al. 2005).   

The tendency to saturate in high biomass areas, and the potential sensitivity of NDVI to variations in 

the brightness of the background material were addressed in the Enhanced Vegetation Index 

(equation 4) (EVI; Huete et al. 2002; Huete 1988):  

��� = $
��	
��

��	�%&×��
%(×�)*��+
         (4) 

Where L is the canopy background adjustment that addresses nonlinear differential NIR and red 

radiant transfer through a canopy, and C 1, C 2 are the coefficients of the aerosol resistance term, 

which uses the blue band to correct for aerosol influences in the red band. The coefficients adopted 

in the EVI algorithm are, L=1, C 1=6, C2=7.5, and G  (gain factor)=2.5 (Huete et al. 2002).  The EVI is 

also provided on the MODIS MOD13Q1 dataset.   

While the EVI may have some advantages under certain conditions (Huete et al. 2006), the inclusion 

of the blue band prevents it being calculated from several global datasets including the Advanced 

Very High Resolution Radiometer (AVHRR) which has the longest archive of historical global data 

coverage.  In addition, the low signal to noise ratio of the blue band can increase error in NPP 

estimates (Jiang et al. 2008).  Improvements in atmospheric correction methods, which reduce 

apparent noise levels in the blue wavelengths, mean that its importance for calibrating EVI 

measurements is decreasing over time, and a 2-band EVI (known as EVI2, equation 5) using only the 

red and NIR bands has been proposed (Jiang et al. 2008): 
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EVI2 is available as an annual 5.6km resolution product via NASA’s Making Earth Science Data 

Records for Use in Research Environments (MEaSUREs) program 

(https://lpdaac.usgs.gov/dataset_discovery/measures). In their review of the comparability between 

NDVI and EVI for land productivity monitoring, Yengoh et al (2015) suggest that as a surrogate for 
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photosynthetic capacity rather than an indicator of LAI, NDVI is preferred over the EVI because it is 

more directly related to fAPAR and has fewer factors which simplifies calculation and makes NDVI 

calculable from a larger range of satellite image datasets.   

5 .3.3 Fract ional  cover 

An alternative to spectral indices, are fractional cover products are becoming increasingly available 

at national and global scales (Guerschman et al. 2009; Guerschman et al. 2015; Weissteiner et al. 

2008).  These products use the spectra of bare soil, photosynthetic vegetation and non-

photosynthetic vegetation to calculate the proportion of these landcover types in each image pixel 

using an unmixing method.  Fractional cover products have an advantage over spectral indices such 

as NDVI in that the fractional cover products can report the proportion of non-photosynthetic 

vegetation in each pixel, to which the NDVI is not sensitive.  Potential sources of bias in these 

products include that cover types are defined by spectral models that may not be representative of 

cover conditions in all regions, and that the cover estimates are based on field measurements of the 

proportion the cover types which may be subject to measurement error.   

5.4 Options for calibrating climate impacts in time series productivity 

data 

Variations in measurements of plant productivity over time are caused by many factors including 

phenological and climatic variations in addition to the effects of human activities that cause 

degradation.  In order to interpret degradation in inherently noisy time series it is necessary to 

account for these other factors.  However, determining the best methods to distinguish degradation 

from natural influences in productivity time series measurements is a contentious and challenging 

issue: the factors influencing long-term productivity levels vary from place to place and over time, 

and some land cover types are more susceptible to influence from these factors than others.   

While rainfall has been shown to have the strongest influence on productivity time series, NPP 

outcomes to a give rainfall level are also influenced by many factors.  Rainfall correction methods 

typically attempt to calibrate NPP in relation to the total amount of rainfall in each growing season. 

However, NPP outcomes for a given rainfall level may also be influenced by temporal differences in 

precipitation during the growing season, soil type and topography amongst other factors (Kumar et 

al. 2002).  These factors vary at different rates and spatial scales, and some are better represented in 

existing datasets than others.  Comprehensive correction for all these factors may require 

sophisticated modelling approaches that are not described in this document.   

Some of the most commonly used and best developed methods are presented below. Datasets 

showing results from several of the climate calibration processes described below are available 

globally, and as National subsets, for the period from 1981 to 2003 from the FAO’s Global 

Assessment of Land Degradation and Improvement (GLADA) website 

(http://www.fao.org/geonetwork/srv/en/main.search?any=glada).  These may be suitable in cases 

where it is not possible to calculate these indices at National scales. A detailed review of the 

application and limitations of additional calibration methods is provided by Higginbottom and 

Symeonakis (2014).   

5 .4.1 Rainfal l  use eff iciency 

Rainfall use efficiency (RUE) is the ratio of NPP to precipitation (Le Houerou 1984), and is reported 

annually.  Accounting for RUE can improve the comparability of NPP between years and locations 

where NPP may be limited by variations in local rainfall.  RUE correction is only appropriate in water 

limited regions where there is a positive correlation between rainfall and NPP (Wessels 2009).  Areas 
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that should be masked from this analysis include agriculture and urban areas where productivity is 

related to management activities (fertilizer and irrigation) rather than limited by water availability 

(Bai et al. 2008).   

RUE relationships may break down in regions of very high rainfall where factors other than water are 

growth limiting, in areas with very low cover where evaporates consumes most rainfall (Fensholt et 

al. 2013) or where the vegetation cover is so low that it’s growth response is insufficient to register a 

significant change in the chosen productivity index.  

5 .4.2  Residual  Trends (RESTREND)  

RESTREND (Evans and Geerken 2004; Wessels et al. 2007) is a development of the RUE method that 

uses linear regression models to predict an NDVI for a given rainfall amount.  RESTREND calculates a 

linear model between the natural log of annual rainfall with against annual NPP estimate based on 

the observation that vegetation productivity typically reaches a plateau in years with very high 

rainfall beyond which it does not increase (Hein et al., 2011 and Milich and Weiss, 2000).  Trends in 

the difference between the predicted NDVI and the observed NDVI (the residual) are interpreted as  

non-climatically related productivity change (Wessels et al. 2012).  This is illustrated in Figure 5.   

 

Figure 5.  Linear regressions between (a) accumulated precipitation and the maximum NDVI – the residual is illustrated by 

the line, and (b) the temporal trend of associated residuals (source Evans and Geerken 2004). 

Subsequent analysis of the sensitivity of RESTREND to land degradation using simulated data 

(Wessels et al. 2012) indicated that it is difficult to detect degradation using RUE or RESTREND 

where there is a positive trend in precipitation.  RESTREND is best suited to detecting extreme and 

rapid degradation resulting in differences in ∑NDVI of around 20-40% between predicted and 

observed NDVI.  Further, RESTREND was also determined to be unreliable when ∑NDVI is reduced by 

20% or more because the relationship between ∑NDVI and rainfall breaks down as a result of 

significantly reduced vegetation cover (Wessels et al. 2012).  Additionally, both RUE and RESTREND 

can fail to detect land degradation where rainfall is variable over time (Wessels et al. 2012).. 

5 .4.3  Relative  RUE 

Relative RUE (rRUE; del Barrio et al. 2010) increases the applicability of RUE to a wider range of 

climatic zones.  This method involves rescaling NDVI observations within the historical range of NDVI 

values within climatic aridity zones (equation 6).   
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rRUE reports the position of the observed RUE RUE-corrected NDVI within the range of NDVI values 

observed across the full time series within each climatic zone.  rRUE is implemented in a freely 

available R package (r2dRue - https://r-forge.r-project.org/R/?group_id=752).  

The rRUE method simplifies the application of RUE methods across large areas which may have 

varying climatic conditions, but it is sensitive to changes in the range of observations in the time 

series.  The addition of new data may cause a rescaling of the potential NDVI range.  In addition, the 

occurrence within land units of locations receiving extra water, such as irrigated crops, will inflate 

the range of values indicating maximum vegetation performance within that region, which may lead 

to an underestimation of the productivity in other similar regions.  This is likely to occur more 

frequently in developing countries where conversion of lands to irrigation is very active.   

5 .4.4 Cal ibrat ion against  a  reference s ite 

Helman et al., (2014) compared RESTREND results over three dryland sites with known land use and 

degradation conditions and similar climatic, topographic, edaphic and vegetation characteristics 

using MODIS NDVI data.  There was a significant negative trend in RUE for all sites but no significant 

trends were identified using RESTREND.  While each site had a unique RUE characteristic, Helman et 

al., (2014) concluded that a decreasing trend of RUE in the assessment sites was only revealed by 

comparison of NDVI trends against the control site.   

The use of control or ‘reference’ sites to aid interpretation of conditions at test sites may require 

normalisation and rescaling of NDVI time series to correctly identify trends in productivity over time 

(Sims and Colloff 2012).  Ideally, control sites should contain identical vegetation communities and 

occur in the same bioclimatic region as the test sites, with the prime difference between the control 

and test sites being the land use intensity.  In practice, ideal control sites do not occur, and the 

sensitivity of this method is usually limited by differences in vegetation and land cover 

characteristics between the reference and test sites, or by slight differences in the timing and 

magnitude of rainfall.   

5 .4.5 Time ser ies  decomposition  

5.4.5.1 SEA SO NA L  DE CO MP OS IT IO N  OF  A  T IME  SE R IES  B Y  LO ES S  (STL)  

Time series decomposition is a statistical method that deconstructs a time series into the underlying 

categories of patterns.  STL (Cleveland et al. 1990) -available in R (http://stat.ethz.ch/R-manual/R-

devel/library/stats/html/stl.html)- decomposes time series into three components: 

1. Seasonal, which is the underlying cycle of variation occurring over a certain period within the 

time series, such as annual phenological cycles,  

2. Trend, which is revealed by subtracting the seasonal component from the original time 

series, and  

3. Remainder, which shows the proportion of variation in the original time series that is 

truncated by the Loess smoothing process.  

Jacquin et al., (2010) applied STL to ‘raw’ MODIS NDVI time series data and a dataset of NDVI values 

accumulated over the growing season data over the Madagascar savannah. They found STL useful 

for identifying the commencement and cessation of the growing season, and for indicating the 

overall trend of NDVI decline over their study period.  Jacquin et al., (2010) interpreted their results 
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in the context of local rainfall information, rather than by transforming the data to minimise climatic 

influences per se.  

5.4.5.2 BREA K S  FO R ADD IT IVE  SEA S ON A L  A N D TREN D  (BFAST)   

BFAST (Verbesselt et al. 2010) is based on STL and includes tools to indicate departures from the 

long term trend.  BFAST uses ab ordinary least squares, residuals-based moving sum (MOSUM) test 

to identify whether one or more breakpoints are occurring in a time series.   

• At broad scales, breaks tend to be indicated in grasslands rather than forests because of the 

more pronounced and rapid growth responses 

• Remains sensitive to changes in the time series provided:  e.g. reanalysing a time series with 

the addition of recent data can identify an entirely different sequence of breaks.  

5.4.6 Water use eff ic iency (WUE) 

One of the assumptions in many RUE-based applications is that 100% of the rainfall in a given region 

is available for assimilation by plants.  The hydrological cycle includes significant losses, however, 

including surface runoff of excess water, groundwater recharge and evaporation which influences 

the proportion of rainfall that is available for use by plants   

Ponce-Campos et al., (2013) describe the calculation of Ecosystem Water Use Efficiency (WUEe) 

which is the ratio of annual NPP to evapotranspiration (ET), defined as precipitation minus the water 

lost to surface runoff, recharge to groundwater and changes to soil water storage.  These authors 

demonstrate a near linear relationship between NPP and ET across grassland and forest biomes in 

the United States, Puerto Rico and Australia which simplifies the calibration process over the non-

linear relationship that typically occurs between NPP and rainfall.  

Ponce-Campos et al., (2013) estimated ET using a model developed by Zhang et al., (2001) which 

computes mean annual evapotranspiration from changes in annual precipitation and the percentage 

of forest cover.  Other evapotranspiration data sources exist, though none appear to be available 

after 2014.  These options include: 

1. Global 8-day evapotranspiration data from MODIS, based on the Penman-Monteith 

equation (http://www.ntsg.umt.edu/project/mod16) 

2. The GLEAM datasets (http://www.gleam.eu/) which are based on microwave remote 

sensing and calculate evapotranspiration using the Priestly and Taylor model 

• Global annual and monthly potential evapotranspiration (http://www.cgiar-

csi.org/data/global-aridity-and-pet-database), which is modelled using the WorldClim 

database (http://worldclim.org/) at approximately 1km spatial resolution 

WUE correction appears to be the most hydrologically comprehensive and widely applicable of the 

rainfall calibration methods presented in this guide.  The main limitation on the accuracy of WUE 

calibration is likely to be the availability and accuracy of the evapotranspiration data.  Consideration 

of the methodological limitations and characteristics of each ET dataset should be made when using 

any of these data sets.  

6 Comments and limitations 

Land productivity is one of three sub-indicators used to assess degradation for SDG Indicator 15.3.1, 

along with land cover and land cover change, and carbon stocks (above and below ground).  Each 

of these sub-indicators responds to different elements of degradation, however they may also be 
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considered complementary in some ways.  Changes in land productivity or soil carbon levels may 

occur over time within a given land cover type, for instance.  Changes in land cover type, however, 

will usually result in changed land productivity levels and dynamics, which in turn influences the 

carbon stocks in a given region.  For this reason, when assessing degradation status on the basis of 

these three sub-indicators, it is convenient to aggregate fine scale results (such as from the pixel 

scale assessments in this method) to spatial features identified in the land cover and land cover 

change sub-indicator.   

The methods described in this guide are based on the WAD method, which is best suited to assessing 

land productivity dynamics in water limited, temperate regions.  This method also uses a range of 

non-parametric or qualitative analyses. This has advantages in terms of enabling nations to make 

decisions based on other sources of information to interpret the accuracy of degradation 

assessments using these methods.  Potential disadvantages of qualitative analyses include that it can 

increase subjectivity, which can make results more difficult to compare between regions.  Each 

Nation will differ in its land cover characteristics, access to datasets, analytical capability and 

development objectives, however, and a particular transition or change that may be mapped as 

degradation in one Nation may be a desirable outcome in another.   

The continued availability of data from any particular source cannot be guaranteed, and the 

suitability of alternative data sources will need to be assessed as data sources fail or new ones 

emerge.  Currently, the MODIS sensors on board the Terra and Aqua satellites provide well 

calibrated, frequent and moderately high resolution NDVI data for the globe.  While Terra and Aqua 

are well past their six-year design life (https://aqua.nasa.gov/) current predictions are that the 

MODIS sensors on both Terra and Aqua should be able to provide data into the 2020s.   
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