GLOBIO3
State and trends of ecosystem condition on multiple levels of scale

Stefan van der Esch
stefan.vanderesch@pbl.nl

UN SEEA Experimental Ecosystem Accounting
18-20 November 2013
New York
PBL Netherlands Environmental Assessment Agency

- National institute for strategic policy analysis on environment, nature and spatial planning

- Outlook studies, analysis and policy evaluations

- Always an integrated, interdisciplinary approach

- Always policy-relevant

- Solicited and unsolicited research, independent, and scientifically sound
New cooperation on testing accounts

- Cooperation between UNSD, Statistics Netherlands and PBL Netherlands Environmental Assessment Agency
- Financed by Ministry of Foreign Affairs
- 2015 - 2017

Goals:
- Test ecosystem accounting in the Netherlands
- Test the applicability of GLOBIO type model and metrics in ecosystem accounting
www.globio.info

Roads from Rio+20
Pathways to achieve global sustainability goals by 2050

Rethinking Global Biodiversity Strategies
Global application

Impacts on biodiversity, 1970 – 2050

2010

Mean Species Abundance

Source: PBL
Global application

Impacts on biodiversity, 1970 – 2050

2050

Mean Species Abundance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Source: PBL
Ecosystem condition: Area * quality
Measuring quality: MSA

- Baseline is 100%, species abundance in undisturbed situation
- Non-original species are excluded, original species topped off at 100%
- Average response of *total* set of species
- Measure of ecosystem condition (intactness)
Why driver-pressure based?

- Monitoring not everywhere available, costly to set up measurement campaigns and networks
- Interested in the process of change
- Therefore, model state of ecosystems from existing information
- MSA able to scale different pressures to common indicator
Environmental pressures included in GLOBIO3

Effect of pressures on MSA value:
1. Land-use change (agriculture expansion, forestry)
2. Infrastructure & settlement
3. Fragmentation
4. Climate change
5. N-deposition

Cause – effect relations for each pressure based on meta-analysis of literature.
- Meta-analysis of scientific literature
- Comparisons between undisturbed state and categories of land use
Output

Global MSA in baseline scenario

- MSA values per grid cell (quality and extent)
- Per pressure contribution to change in MSA
- Beware of the interactions and double-counting
- Which are most important in linking to ESS?

Figure 1 Ecosystem condition as represented by the SEEA-EEA

Table 4.3 Measures of ecosystem condition and extent at end of accounting period for an EAU

<table>
<thead>
<tr>
<th>Ecosystem extent</th>
<th>Characteristics of ecosystem condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>Vegetation: Indicators (e.g. Leaf area index, biomass, mean annual increment)</td>
</tr>
<tr>
<td>Type of LCEU</td>
<td>Forest tree cover</td>
</tr>
</tbody>
</table>

* Medium to large fields rainfed herbaceous cropland
Criteria for models

- Bagstad (2013) criteria for models to be used to measure ESS in ecosystem accounting:
 - quantification and uncertainty, time requirements, capacity for independent application, generalizability, non-monetary and cultural perspective, affordability, insights and integration with existing environmental assessment.

- Also think of criteria for the metrics and indicators:
TABLE 6: Set of headline indicators agreed on by the Conference of the Parties to the CBD through decision VII/30 and VIII/15

<table>
<thead>
<tr>
<th>FOCAL AREA</th>
<th>INDICATOR</th>
</tr>
</thead>
</table>
| Status and trends of the components of biological diversity | • Trends in extent of selected biomes, ecosystems, and habitats
• Trends in abundance and distribution of selected species
• Coverage of protected areas
• Change in status of threatened species
• Trends in genetic diversity of domesticated animals, cultivated plants, and fish species of major socioeconomic importance |
| Sustainable use | • Area of forest, agricultural and aquaculture ecosystems under sustainable management
• Proportion of products derived from sustainable sources
• Ecological footprint and related concepts |
| Threats to biodiversity | • Nitrogen deposition
• Trends in invasive alien species |
| Ecosystem integrity and ecosystem goods and services | • Marine Trophic Index
• Water quality of freshwater ecosystems
• Trophic integrity of other ecosystems
• Connectivity / fragmentation of ecosystems
• Incidence of human-induced ecosystem failure
• Health and well-being of communities who depend directly on local ecosystem goods and services
• Biodiversity for food and medicine |
| Status of traditional knowledge, innovations and Practices | • Status and trends of linguistic diversity and numbers of speakers of indigenous languages
• Other indicator of the status of indigenous and traditional knowledge |
| Status of access and benefit-sharing | • Indicator of access and benefit-sharing |
| Status of resource transfers | • Official development assistance provided in support of the Convention
• Indicator of technology transfer |

Indicators shown in bold typeface have been assessed in this study. Indicators in italics are still in development.
Three complementary state indicators

Mean species abundance relative to baseline

Ecosystem extent

Species abundance

Ecosystem quality

Threatened Red List Index

RLI

Habitat loss
Policy relevance

- Future projections (baseline)
- Provide order-of-magnitude perception, and interactions between drivers
- Policy options based on changing drivers of loss
National applications

GIS part

calculation

current

biodiversity

Example Zambia

Intermediate output

Pressure impact

Output

Overall impact pressures

Input layers

drivers / pressures

land use

eco-regions

infrastructure

population

climate

MSA_lu

MSA_infra

MSA_frag

MSA_clim

MSA_total

Cause – Effect relations

GIS raster multiplication

MSA_{tot} = MSA_{lu} \times MSA_{infra} \times MSA_{frag} \times MSA_{clim}
National applications

Remaining MSA and pressures by region in 2000

Remaining MSA and its pressures in 2000
National application: Adjusting MSA values of land use classes with the help of expert knowledge

Original GLOBIO 3 Land Use MSA value table

<table>
<thead>
<tr>
<th>Biodiv class name</th>
<th>MSA value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary forests</td>
<td>1.0</td>
</tr>
<tr>
<td>Forest plantations</td>
<td>0.2</td>
</tr>
<tr>
<td>Secondary forests</td>
<td>0.5</td>
</tr>
<tr>
<td>Light used primary forests</td>
<td>0.7</td>
</tr>
<tr>
<td>Agro forestry</td>
<td>0.5</td>
</tr>
<tr>
<td>Extensive agriculture</td>
<td>0.3</td>
</tr>
<tr>
<td>Irrigated intensive agriculture</td>
<td>0.05</td>
</tr>
<tr>
<td>Intensive agriculture</td>
<td>0.1</td>
</tr>
<tr>
<td>Perennials & bio fuels</td>
<td>0.2</td>
</tr>
<tr>
<td>Natural grass & shrub lands</td>
<td>1.0</td>
</tr>
<tr>
<td>Man made pastures</td>
<td>0.1</td>
</tr>
<tr>
<td>Livestock grazing</td>
<td>0.7</td>
</tr>
<tr>
<td>Natural Bare, rock & snow</td>
<td>1.0</td>
</tr>
<tr>
<td>Natural inland water</td>
<td>null</td>
</tr>
<tr>
<td>Artificial water</td>
<td>null</td>
</tr>
<tr>
<td>River/stream</td>
<td>null</td>
</tr>
<tr>
<td>Built up areas</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Vietnam adapted Land Use MSA value table

<table>
<thead>
<tr>
<th>Code</th>
<th>Lu original (2002)</th>
<th>Local MSA value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Natural Timber Forest</td>
<td>0.9</td>
</tr>
<tr>
<td>11</td>
<td>Rich Forest</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Medium Forest</td>
<td>0.8</td>
</tr>
<tr>
<td>13</td>
<td>Poor Forest</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>Young Forest</td>
<td>0.55</td>
</tr>
<tr>
<td>21</td>
<td>Reforestation Rich</td>
<td>0.45</td>
</tr>
<tr>
<td>22</td>
<td>Reforestation Medium</td>
<td>0.4</td>
</tr>
<tr>
<td>23</td>
<td>Young forest with volume</td>
<td>0.55</td>
</tr>
<tr>
<td>24</td>
<td>Young forest with no volume</td>
<td>0.45</td>
</tr>
<tr>
<td>31</td>
<td>Dipterocarp forest (deciduous)</td>
<td>0.95</td>
</tr>
<tr>
<td>32</td>
<td>Semi- deciduous forest</td>
<td>0.95</td>
</tr>
<tr>
<td>41</td>
<td>Natural conifer forest</td>
<td>0.95</td>
</tr>
<tr>
<td>42</td>
<td>Mix forest (Broad leaf and conifer forest)</td>
<td>0.8</td>
</tr>
<tr>
<td>51</td>
<td>Bamboo forest</td>
<td>0.45</td>
</tr>
<tr>
<td>52</td>
<td>Mix forest (Timber+bamboo forest)</td>
<td>0.55</td>
</tr>
<tr>
<td>60</td>
<td>Mangrove forest</td>
<td>0.8</td>
</tr>
<tr>
<td>70</td>
<td>Plantation forest</td>
<td>0.2</td>
</tr>
<tr>
<td>71</td>
<td>Speciality forest</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Adjustment of values based on local expertise.
Input data required for GLOBiO3

LULC map

Land use

Nitrogen deposition

Climate change

(rail-) roads

Land-use effect

Nitrogen effect

Climate effect

Fragmentation effect

Infrastructure effect

GLOBiO

Biodiversity (MSA) of land ecosystems
Applied on different scales of analysis

- Assessments using GLOBIO3:
 - UNEP’s Global Environment Outlook
 - CBD’s Global Biodiversity Outlooks
 - OECD Environmental Outlook
 - TEEB (Rethinking and Quantitative Assessment)
 - 25 countries trained to use GLOBIO3
 - In 2013 three workshops (~60 countries total), sponsored by Japan and the Netherlands, capacity building GLOBIO3 application on national scale for 5th national report to CBD

- Model available for anyone (number of countries use own adaptations)

- Main work comes from creating the input (LULC maps mainly)

- Complications in use come with future projections; current state is not complicated
Creating a global baseline

- Two ways to improve on our current global baseline:
 - More precise land use maps (country level) that use globally nested LULC categories (to maintain projection ability)
 - Improve and add MSA estimates for different LULC with regional experts

- Adaptable to national ambition levels; always zero-order available (current baseline)

Example Vietnam case

- Split the model into the parts per pressure type
- Resolution in GLOBIO set to 1*1 km
- National land use map with > 43 land classes, MSA values per land use class based on local expert knowledge
Degraded Degrading

Cstorage & climate

• Km3 soil water prist, LU, degra, to 2050
• Change in waterstress days
• Figure: Nr days/km2 flooded
• Map all year / seasonal rivers

Water retention & floods

• Mln km2 arable / grazing
 good condition & degraded & abandoned & reserve, tot 2050 Stapel diagram
• Lost food production former & current agri land in Kcal & kg proteins tov potential, tot 2050

Agri area & food

• Mln km2 forestry
 good condition & degraded & lost & reserve, tot 2050 Stapel diagram
• Lost timber & fiber production former & current forestry land in m3 & tons per Y tov potential, tot 2050

Forestry area & fiber

• Remaining MSA & loss due to agri, forestry, climate, infra/urban, Ndep, degradation from former LU & indirect from degradation from current LU

Biodiversity

• Map % prim sector/GDP
• Lost GDP due to degradation Map
• Figure: x-as 100- 0% env income y-as Nr people
• Nr of high env dependent people in degrading areas tot 205

Environm dependency
Species richness vs. naturalness

Original
- First strike: Large animals lost

Hunting & gathering
- Second strike: Habitat loss

Extensive agriculture
- Third strike: intensification

Intensive agriculture
- Counter move: Protected areas

Current ecosystem
- Decreasing biodiversity in natural ecosystems

- Decreasing biodiversity in agri-ecosystems
- Settlement
- Protected area

Time
Recent PBL global assessments

PBL global assessments aim to:
- Identify socio-economic and environmental trends
- Show interactions between trends
- Provide order-of-magnitude estimates of potential change
- Assess effects of alternative ‘options’ or system changes
Projections of accelerating economic growth

Global economics in the Trend scenario

GDP per region

Range from literature

Developing countries
- Central and South America
- Middle East and North Africa
- Sub-Saharan Africa
- South Asia
- China region
- Southeast Asia

Industrialised countries
- North America
- West and Central Europe
- Russian region and Central Asia
- Japan, Korea and Oceania

History
- Trend scenario

Range from literature
- 10 – 90%
- 25 – 75%
Projections of increased demands of food

Food demand

Index (2000 = 100)

- Sub-Saharan Africa
- Middle East and North Africa
- India and South Asia
- Latin America
- China and Southeast Asia
- Developing countries
- World
... and water

Figure 5.4. Global water demand: Baseline, 2000 and 2050

Notes: This graph only measures “blue water” demand (see Box 5.1) and does not consider rainfed agriculture.
Source: OECD Environmental Outlook Baseline; output from IMAGE.
Projections of increased pressure on the environment

Global CO$_2$ emissions, air pollutants and biodiversity

- **CO$_2$ emissions**
- **Air pollutants**
- **Biodiversity**

- CO$_2$ emissions
- Black carbon
- Nitrogen oxides
- Organic carbon
- Sulphur oxides
- Conferences in Stockholm (1972) and Rio (1992)

% Mean Species Abundance (MSA)
No projections of feedback from environmental degradation on economy
Different approaches

- Different policy options

Rethinking global biodiversity strategies (2010)

![Bar chart showing prevented global MSA loss compared to baseline scenario, 2000 – 2050](chart)

Prevented global MSA loss of options expanding protected areas and reducing deforestation by 2030
Different approaches

- Sector-oriented

Protein Puzzle, (2011)
Different approaches

- Backcasting from global policy goals

Roads from Rio+20 (2012)
Work on biodiversity and ecosystems

- Biodiversity (GLOBIO 3)
- Aquatic biodiversity (GLOBIO Aquatic)
- Global land degradation (current and ongoing)
- Functions: SOC & carbon storage, water retention
- Water demand, drought and flood models
- Ecosystem services (production from IMAGE)
- Environmental dependency