

Greenhouse Gas Emissions Estimations from the Energy Sector

Ankara – Workshop on Energy Statistics, Balances, and Accounts for Informed Energy and Climate Policies

Alexandre Bizeul – Statistics Team Lead

12 December 2024

- I. Climate change tracking climate targets with energy data
- II. GHG estimates methodology Sectoral and Reference Approach
- **III. Exercises & Conclusions**

What:

Why:

Type of data:

Time granularity:

Submissions:

Who:

Emissions team:

Energy accounts for more than three-quarters of total greenhouse gas (GHG) emissions globally. Thus, tracking the GHG emissions from energy is vital for developing sustainable energy policies and for mitigating the Climate Change.

GHG emissions from energy and related indicators, including CO2, CH4, N20 emissions from **fuel combustion**, **fugitive emissions**, **and emission factors** for electricity and heat generation.

Yearly data for fuel combustion and fugitive emissions, yearly, quarterly and monthly data for emission factors.

No direct submissions – the emissions estimates are **based on energy data** submitted to the IEA **World Energy Balances** database. The emission factors, in addition, utilize the IEA **Monthly Electricity Statistics** and IEA **Electricity Information** databases.

at emissions@iea.org (RÍSQUEZ Arnau, TAGHAVI Pouya, KÖYKKÄ Juha)

Energy emissions defined

The importance of energy data in tracking GHG emissions

Energy accounts for around three quarters of the global greenhouse gas emissions

120

Consistency - harmonized requirements and definitions

International Recommendations on Energy Statistics (IRES)

 Global reference for energy statistics methodologies

2006 IPCC Guidelines for National Greenhouse Gas Inventories

 Guidelines for estimating and reporting national GHG inventories

Volume 2 Energy

Comparability of energy statistics is key. IRES is consistent with IPCC methodologies.

IEA is a co-author of the IPCC Guidelines and contributes to the development of international standards on energy and emissions statistics.

Join at menti.com | use code 7937 2745

GHG Emissions estimates

Go to www.menti.com

Enter the code

7937 2745

Or use QR code

IEA 2023. All rights reserved.

Quiz ! Go to https://www.menti.com/ and use this code: 7937 2745

> Which sector was the highest emitter in the MENA region in 2021?

- 1. Transport
- 2. Power generation & energy industry
- 3. Industry
- 4. Buildings

GHG emissions and related indicators – Sectoral split

The sectoral division of emissions is connected to the **economic structure** of a country.

High share of emissions from power generation & other energy industries expected from countries with prominent energy industry.

Transport sector is another significant source of emissions. Connection to emissions from the power sector.

GHG emissions from fuel combustion - share by sector

Power generation & other energy industries
Industry
Transport
Buildings
Other

The Buildings sector includes residential, commercial and public services. The Other sector includes agriculture, forestry, fishing and non-specified consumption.

GHG emissions and related indicators – Carbon intensity

lea

The carbon intensity is an indicator of the fossil fuel reliance of an economy

Source: IEA (2023) – GHG Emissions from Energy

IEA 2023. All rights reserved.

lea

2006 IPCC Guidelines for National GHG Inventories: two approaches for estimating **fuel combustion** emissions

Sectoral Approach

Bottom up: from economic activity i.e. **demand data** to emissions

Reference Approach

Top down: from **energy supply data** to emissions

	Sector 1	Sector 2	Sector 3		Supp	ly
duct A	Trancf	ormation	8	Product A	\	_
roduct B	Final c	onsumpt	a - ion	Product E	3	Er
Product C		l	.1011 -	Product (

Both approaches exclude the non-energy use of fuels!

Includes **all GHGs** from fuel combustion

Includes only CO₂ emissions from fuel combustion

Reference Approach methodology (2006 IPCC guidelines)

Principle of mass conservation

Top-down approach:

- Uses country's energy supply data
- Only CO₂ emissions
- Primarily a benchmark method, used to verify results of the more granular Sectoral Approach

120

Sectoral Approach basics – carbon emission factors

Emission factor represents the amount of emissions released per unit of fuel combusted. Emission factors are fuel (here *i*) specific.

 EF_i : Emission Factor $\left[\frac{kg_{GHG}}{ka_{ford}}\right]$

In the sectoral approach, the unit of fuel is represented as energy instead of mass:

 EF_i : Emission Factor $\left| \frac{kg_{GHG}}{TI_{form}} \right|$

IPCC TIER 1 Methodology:

$$Emissions_{GHG} = \sum_{fuel} EF_{fuel} \times Fuel_{fuel} \times NCV_{fuel}$$

 EF_{fuel} : Emission Factor $\left| \frac{kg_{GHG}}{T_{fuel}} \right|$ Fuel_{fuel}: fuel combusted [Gg] NCV_{fuel}: net colorific value[TJ/Gg] fuel: fuel type (e.g. gasoline, natural gas, LPG)

Bottom-up estimate: sum over all the sectors where combustion occurs:

- Total Final Consumption e.g. industry, residential, etc.
- Input into electricity & heat production
- Energy industries own use e.g. own use in refineries, etc.

Net Calorific Value (NCV) is a property of fuels. It represents the practical amount of energy received per unit of fuel combusted.

Quiz ! Go to https://www.menti.com/ and use this code: 7937 2745

- A car combusts 5 kg of motor gasoline per 100 km. How many kilograms of CO₂ is emitted during a 1000 km trip by this car?
 - Motor Gasoline NCV = 44 MJ/kg
 - Motor Gasoline CO₂ emission factor = 0.1 kg CO₂/MJ
 - 1. 2 200 kgCO₂
 - 2. 220 kgCO₂
 - 3. 11 kgCO₂

120

Tracking biomass use for non-CO₂ emissions estimates

 2006 IPCC Guidelines: CO₂ emissions from biomass combustion are not included in national totals corresponding to the energy sector, as they are estimated and reported in the Agriculture, Forestry and Other Land Use sector.

Unlike CO₂, the emissions of CH₄ and N₂O, should be estimated and included in the energy sector and national totals since their effect is in addition to the stock changes estimates in the Agriculture, Forestry and Other Land Use sector.

From energy data to emissions – China

Timeliness of emissions estimates relies on the availability of the energy data

Coal and coal products (2022)	UNIT: Mtoe
Total final consumption	525.075
Industry	397.805
Mining and quarrying	4.769
Construction	1.732
Manufacturing	359.358
Iron and steel	169.046
Chemical and petrochemical	31.72
Non-ferrous metals	15.895
Non-metallic minerals	126.938
Transport equipment	0.408
Machinery	5.645
Food and tobacco	6.425
Paper, pulp and printing	2.273
Wood and wood products	0.052
Textile and leather	0.956
Industry not elsewhere specified	31.946

IEA estimations, based on IEA energy balances and IPCC Tier 1 methodology

GHG emissions from fuel combustion by sector, People's Republic of China

Commodity	Bituminous	Product 2							
balances	coal kt	m3	Net Calorific Values	Bituminous coal	Pro	Energy	Bituminous coal	Product 2	
Production	100			TJ/Kt TJ/f		(excerpt)	TJ	ТJ	
Import	20		Production	23		Draduction	2200		
Export	40		Import	25		Production	2300		
Supply	80		Export	22.5			500		
Statistical	0					Export	900		
differences						Supply	1900		
Input to	50		Input to Electricity	22		Statistical differences	200		
Licotholty						Input to	1100		
			Final	20		Electricity			
Final	30		consumption	20					
consumption						Final	600		
Need	to collect	goo	d data for			consumption			
physical quantities AND calorific values									

Disaggregation of end-use sectors important

The sectoral breakdown of UNFCCC CRF/CRT tables follows the IPCC source categories

Electricity grid emission factors

Emissions from on-premises fuel combustion

Electricity consumption

Average emissions intensity of the electricity grid (= emission factor for electricity generation) Quiz ! Go to https://www.menti.com/ and use this code: 7937 2745

- Which of the following are true for the 2006 IPCC Sectoral Approach of estimating GHG emissions?
 - **1.** Is based on energy supply data
 - 2. Is more granular than the Reference Approach
 - **3.** Accounts only for CO₂ emissions
 - 4. Is affected by uncertainties in NCVs

120

Quiz ! Go to https://www.menti.com/ and use this code: 7937 2745

Calculate the Apparent Consumption of crude oil in Australia in 2021, using the formula:

Source: UNFCCC 2023 Annex I Party GHG Inventory Submissions

Apparent Consumption = Production(primary fuels) + Imports – Exports -International bunkers – Stock change

Product	Unit	Production	Imports	Exports	International bunkers	Stock change
Crude Oil	PJ	863	547	593		-31

Which is the correct value?

- 1. 1972 PJ
- 2. 786 PJ

3. 848 PJ

Fugitive emissions – leaks of gases and vapours

led

Tier 1 approach: countries choose from a global average range of emission factors and use country-specific activity data to calculate total emissions.

Activity data:

- Volume of flaring
- Number of abandoned mines
- Refinery throughput
- Pipeline capacity
- Etc.

Specific to the category of fugitive emissions (solid fuels, liquid fuels etc.)

IPCC TIER 1 Methodology:

 $E_{GHG} = Activity Data x Emission Factor$

Tier 2 approach: country or facility specific emission factors that represent the average values.

Tier 3 approach: direct measurements on a mine or facility basis.

Quiz ! Go to https://www.menti.com/ and use this code: 7937 2745

Fugitive emissions are significant for many fossil fuel producing economies. Which activities can release fugitive emissions?

Share of fugitive and total energy emissions, MENA region 2021

Total GHG emissions - Energy

Total GHG emissions - Fugitive

120

Key takeaways – national energy data

lea

Apply sectoral approach, verify with reference approach

• Significant differences may indicate problems with activity data vs supply data, net calorific values, carbon content, excluded carbon calculation, etc.

Sectoral National energy data are the primary source for GHG emission estimates.

- Well-resourced and well-designed **national energy data collection** is essential for sound policy tracking and broader energy planning.
- Appropriate **institutional arrangement** facilitating the cooperation of stakeholders (energy and climate/environment) at the national level improved data consistency.

IEA is ready to provide support: material, training, bilateral work.

EMISSIONS@iea.org

IEA Emission factors

- 1) IEA Emission Factors database (global coverage, 1990 to year minus 2 and provisional year for some countries):
 - a) Emission factors at the point of generation for electricity only as well as electricity and heat
 - b) Direct combustion factors of granular fuels
 - c) Adjustment factors for trade (only OECD countries) and T&D loss

Database is widely used for Scope 2 and Scope 1 reporting under the GHG Protocol.

2) **IEA Life Cycle Upstream Emission Factors database** (global coverage, 2015 to year minus 2 and provisional year for some countries):

- a) Set of life cycle upstream emission factors corresponding to electricity grids
- b) T&D adjustment factor from a life cycle perspective

Database is widely used for Scope 3 – Category 3 reporting under the GHG Protocol.

3) **IEA Monthly and Quarterly Emission Factors** (over 50 countries, 2015 to 2nd quarter of latest year)

Electricity grid emissions factors with monthly and quarterly temporal resolution developed by leveraging the IEA Monthly Electricity Stat

Overall methodology – A. total upstream and fuel-cycle emission factors

Step 1: Developing country-specific or regional/global proxies for fuel-cycle and total upstream emission factors for all the fuels/technologies used for electricity generation globally.

Output based factors: mass of CO_{2eq}/kWh electricity generation

Input based factors : mass of CO_{2eq}/kWh fuel input to the generation plant

Step 2: Multiply the developed factors by the **appropriate activity data** for each fuel/technology and divide by the total electricity generation as per the equation below:

$$EF_{upstream\ grid\ factor} = \frac{\sum_{i}\ EF_{i}\ \times\ activity\ _{i}}{Total\ Elec\ output}$$

EF ; Fuel-cycle or total upstream emission factor per kWh output or per unit of energy as (gCO2eq/kWh) for fuel or technology i

Activity *;*: Energy output or input to the plant for fuel or technology i

Total electricity output: total electricity generation from all fuels and technologies (kWh)

In order to account for the emission intensity induced due to the T&D losses from a life cycle perspective, the **overall life cycle emission intensity** of the electricity grid is multiplied by the **percentage of the T&D losses** occurred as detailed by the following equation:

 $T\&D_{life\ cycle} = (EF_{Total\ upstream} + EF_{Direct}) \ x \ Loss \ factor$

Loss factor = $\frac{T\&D\ losses}{Grid\ electricity\ throughput}$

Where:

- *T*&*D* Losses : total transmission and distribution losses in the grid.
- Grid electricity throughput : total amount of electricity flowing through the national electricity grid, computed as gross electricity generation own use of electricity in generation plants + imports.

Weighted EFs for each month *m* based on estimated *GrossEleOut* by product *p* (COAL, NATGAS, OIL and OTHER):

$$EF_{m} = \frac{\sum_{p=1}^{p=4} (EF_{p,Y-1} * GrossEleOut_{p,m})}{GrossEleOut_{m}}$$

 $GrossEleOut_{p,m} = GrosstoNetRatio_{p,m} * NetEleOut_{p,m}$

Where:Sources: $EF_{p,Y-1}$: Emission factor for product p in year Y - 1CO2FACWV $GrossEleOut_{p,Y-1}$: gross electricity output for product p in year Y - 1ELEBAL $NetEleOut_{p,m}$: net electricity output for product p in month mMES $GrossNetRatio_{p,m}$: gross/net ratio for product p in month mMESCONV

Macroeconomic drivers of CO₂ emissions

The Kaya identity: Relating CO₂ emissions to macroeconomic factors

$$CO_2 = P \times \left(\frac{GDP}{P}\right) \times \left(\frac{TES}{GDP}\right) \times \left(\frac{CO2}{TES}\right)$$

Increases in population and GDP per capita have been driving the global CO_2 emissions upward

Source: IEA (2023) – GHG Emissions from Energy

Sectoral approach – methodology (2006 IPCC guidelines)

GHG source and sink categories for fuel combustion - IPCC CRF Tables

Industry - Table1.A(a)s2	Transport - Table 1.A(a) s3	Other sectors –Table1.A(a)s4			
1.A.2 Manufacturing industries and	1.A.3 Transport	1.A.4 Other sectors			
construction	Liquid fuels	Liquid fuels			
Liquid fuels	Solid fuels	Solid fuels			
Solid fuels	Gaseous fuels	Gaseous fuels			
Gaseous fuels	Other fossil fuels ⁽⁴⁾	Other fossil fuels ⁽⁴⁾			
Other fossil fuels ⁽⁴⁾	Biomass ⁽⁶⁾	Peat ⁽⁵⁾			
Peat ⁽⁵⁾	a. Domestic aviation ⁽¹⁰⁾	Biomass ⁽⁶⁾			
Biomass ⁽⁶⁾	Aviation gasoline	a. Commercial/institutional ⁽¹²⁾			
a. Iron and steel	Jet kerosene	Liquid fuels			
Liquid fuels	Biomass	Solid fuels			
Solid fuels	b Road transportation ⁽¹¹⁾	Gaseous fuels			
Gaseous fuels	Gasoline	Other fossil fuels ⁽⁴⁾			
Other fossil fuels ⁽⁴⁾	Diesel eil	Peat ⁽⁵⁾			
Peat ⁽⁵⁾	Diesei oli				
Biomass ⁽⁶⁾	Liquefied petroleum gases (LPG)	Biomass ⁽³⁾			
b. Non-ferrous metals	Other liquid fuels (please specify)	b. Residential ⁽¹³⁾			
Liquid fuels	Gaseous fuels	Liquid fuels			
Solid fuels	Biomass ⁽⁶⁾	Solid fuels			
Gaseous fuels	Other fossil fuels (please specify) ⁽⁴⁾	Gaseous fuels			
Other fossil fuels ⁽⁴⁾	i. Cars	Other fossil fuels ⁽⁴⁾			
Peat ⁽⁵⁾	Gasoline	Peat ⁽⁵⁾			
Biomass ⁽⁶⁾	Diesel oil	Biomass ⁽⁶⁾			

High quality demand data across sectors are key for estimating the emissions based on sectoral approach

lea

CO2 emissions are consistent across technologies

 CH_4 and N_2O emissions are strongly dependent on the technology applied in both stationary and mobile combustions. Thus, the EFs vary accordingly.

- Uncertainties in **NCVs** would result in uncertainties in the emission estimates.
- More sophisticated **Tier 2 or Tier 3** methods take into account more **detailed countryspecific** information available (e.g. on different technologies or processes).

Reference approach – methodology (2006 IPCC guidelines)

CRF Table 1.A(b)

FUEL TYPES		Unit	Production	Imports	Exports	International	Stock change	Apparent	Conversion		Apparent	
							bunkers		consumption	factor	NCV/ GCV ⁽²⁾	consumption
										(TJ/Unit) ¹		(TJ)
Liquid fossil		Crude oil	k	670.47	8333.37	NO		33.84	8970.00	42.50	NCV	381224.83
	Primary fuels	Orimulsion	k	NO	NO	NO		NO	NO	NO	NCV	NC
		Natural gas liquids	k	17.74	NO	NO		NO	17.74	42.50	NCV	753.96
	Secondary	Gasoline	k	t	730.88	1060.26	NO	-49.34	-280.04	40.98	NCV	-11475.72
	lueis	Jet kerosene	k	t	82.93	19.19	803.16	-7.09	-732.32	43.30	NCV	-31709.51
		Other kerosene	k	t	0.80	0.11	NO	0.00	0.69	43.30	NCV	29.86
		Shale oil	k	t	NO	NO		NO	NO	NO	NCV	NC
		Gas/diesel oil	k	t	5064.91	1007.93	13.39	-25.40	4068.99	42.45	NCV	172719.36
		Residual fuel oil	k	t	65.34	466.77	NO	-16.95	-384.49	41.15	NCV	-15821.68
		Liquefied petroleum gases (LPG)	ki	t	62.35	85.77		-1.47	-21.94	46.12	NCV	-1012.02
		Ethane	k	t	IE	IE		IE	IE	NO	NCV	NO,IE
		Naphtha	k	t	NO	186.45		5.89	-192.34	45.01	NCV	-8657.17
		Bitumen	k	t	313.38	187.47		0.30	125.61	41.80	NCV	5250.29
		Lubricants	k	t	143.60	108.93	NO	0.15	34.52	41.80	NCV	1442.97
		Petroleum coke	k	t	62.84	0.48		-1.15	63.51	30.26	NCV	1921.76
		Refinery feedstocks	k	t	101.11	95.18		4.40	1.53	42.79	NCV	65.48
		Other oil	k	t	64.31	6.00		-0.08	58.40	46.01	NCV	2687.03
Other liquid fossil												
Liquid fossil totals											497419.44	

Same product classification and flow definitions among energy statistics and climate reporting thanks to international harmonisation

WEO Methane Tracker Methodology

Our estimates take into account a range of auxiliary data that is calibrated to match available measurement data

led

		kg CH₄/GJ	Emission intensity (energy ratio)
Oil	Offshore	0.10	0.57%
Oil	Onshore conventional	0.10	0.57%
Oil	Unconventional	0.16	0.91%
Gas	Offshore	0.12	0.67%
Gas	Onshore conventional	0.12	0.67%
Gas	Unconventional	0.21	1.14%
Oil	Downstream	0.00	0.01%
Gas	Downstream	0.07	0.41%
Total	Upstream	0.17	0.97%
Total		0.21	1.17%

- For **unconventional** oil and gas production in 3 major basins, we estimate emissions of about 4.5 Mt, aligned with Kayrros estimates based on basin-level inversion (2021).
- For **offshore** emissions, emissions are 0.43 Mt (0.47 Mt in 2018). This is within the 0.40-0.71 Mt range of Negron et al. (2020) for the Gulf of Mexico.
- Total US emissions for 2021 are taken as 13.2 Mt. Alvarez et al. (2018) indicate 13 ± 2 Mt for 2015.

Methodological approach – Turkmenistan example

Towards improving national data for energy and climate policy

Ensure that one coherent set of national energy data is used for both purposes

led