

System of Environmental Economic Accounting

### **Energy Balances to Accounts** 10-12 December 2024, Ankara, Türkiye

Jessica Ying Chan United Nations Statistics Division



#### Outline

- Overall links, similarities and differences
- Going from energy balances to energy accounts
- Terminology





System of Environmental Economic Accounting

#### LINKS, SIMILARITIES, DIFFERENCES



## **Energy statistics, balances and accounts**



#### **Other data sources**

- National accounts
  - External trade statistics
    - Commodity
      statistics
- Traffic & transport data
- Household surveys



## Physical energy flow accounts in context

- Energy statistics and balances provide a wealth of information
  - > SEEA uses the IRES definition of an energy product
  - > SEEA accounts can be compiled using the SIEC classification
- Both measure energy production, consumption, transformation
- But accounts differ from balances in important ways
  - > Energy balances have a focus on the transformation sector; accounts provide an economic perspective of energy supply/use
  - Different concepts and classifications due to coherence of the accounts with the System of National Accounts (e.g. ISIC—International Standard Industrial Classification of All Economic Activities)



## Main differences between energy balances and accounts

| Energy balances                                                                                                | Energy accounts                                                     |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Physical                                                                                                       | Physical and monetary                                               |
| Based on energy statistics                                                                                     | Based on energy statistics and balances                             |
| Territory principle                                                                                            | Residence principle                                                 |
| Various formats (IEA, Eurostat, UN)                                                                            | Uses national accounts supply and use table format                  |
| Re-arrangement of industries' energy<br>use according to purpose (transport,<br>auto-producers, heat for sale) | No re-arrangement of industries' energy use                         |
| Focus on energy sector, including description of technologies                                                  | Energy "sector" described by ISIC, no special focus on technologies |
| All transport in one sector                                                                                    | Own account transport included in industries' activities            |
| International bunkers excluded from<br>supply                                                                  | International bunkers included in supply                            |



### **Residence vs. territory principle**



- In accordance with the System of National Accounts and SEEA-Central Framework, the scope of SEEA-Energy covers the economic activity of resident units
- Resident of a country = institutional unit with centre of economic interest in the economic territory of a country
- Resident units can operate inside or outside of the national territory
- Use of residence principle is in contrast to energy statistics and balances



# Residence vs. territory principle: an example



- A resident of Türkiye drives to Iraq to visit a friend and re-fuels before they drive home.
  - SEEA: Fuel purchased is accounted for as an import in Türkiye's accounts
  - Energy statistics/balances: Fuel purchased is counted as energy consumption in Iraq's statistics and balances
  - A resident of Iraq visits Türkiye on holiday
    - SEEA: Energy used by the resident of Iraq is counted as an export in Türkiye's accounts, and would be considered an import in Iraq's accounts
    - Energy statistics/balances: Energy used by the resident of Iraq is accounted for as energy consumption in Türkiye's statistics and balances



#### **Energy use by industries**

- Generally recorded by ISIC
- Exceptions for energy industries and transport
- In accounts, energy use is always recorded by the industry using the energy
- Especially with regards to road transport, this usually means some adjustments

Final consumption Final energy consumption Manufacturing, const., mining Transport Road Domestic aviation Domestic navigation Other transport Other Agriculture, forestry, fishing Commerce and public services Households Other consumers Non-energy use



#### **Focus on technologies**

- Energy statistics and balances have a focus on technologies, which energy accounts do not have
- Transformation in the accounts is simply recorded under the relevant ISIC category—no information on technologies beyond this is supplied
  - E.g. Main activity electricity plant and main activity producer CHP plant both under ISIC D

| Transformation            |  |
|---------------------------|--|
| Electricity plants        |  |
| Charcoal plants           |  |
| Other transformation      |  |
| Energy industries own use |  |
| Losses                    |  |



#### **Differences for international bunkers**

- Key differences concerning international bunkers
  - International bunkers = Quantities of fuel delivered to ships/aircraft of any nationality for consumption during international voyages transporting goods or passengers
- Supply and international (aviation and marine) bunkers
  - Balances subtract international aviation and marine bunkers from supply
  - Supply in accounts includes fuel made available through international marine and aviation bunkers
- Imports/exports from bunkering
  - For the balances, the bunkering of fuel abroad by national ships/aircraft engaged in international travel is excluded from imports
  - For the accounts, this fuel is considered an import
  - Similar case for exports



#### **Differences for international bunkers**

- Example:
  - Turkish Airlines fuels up in Istanbul for a flight to Cairo with 5 TJ of fuel
  - Once in Cairo, they re-fuel at the airport for the flight back to Türkiye with 4 TJ of fuel
- Balances:
  - International bunkers in Türkiye are included in production but then removed from energy supply
  - Not counted as consumption in the balances
  - Use of fuel in Cairo is not considered an import for the balances
- Accounts:
  - The 5 TJ of fuel bunkered in Istanbul is included in energy supply and then used by the aviation industry
  - Fuel delivery to Turkish in Cairo is counted as 4 TJ of imports to supply in accounts, which are used by aviation industry

|                                                      | Accounts                     | Balances                                         |
|------------------------------------------------------|------------------------------|--------------------------------------------------|
| Fuel bunkered<br>in Istanbul by<br>Turkish           | 5 TJ is part of supply       | Not part of<br>supply                            |
| Use of fuel<br>bunkered in<br>Istanbul by<br>Turkish | End use of 5<br>TJ by ISIC H | Not part of<br>final<br>consumption              |
| Use of fuel<br>bunkered in<br>Cairo by<br>Turkish    | Import to<br>Türkiye of 4 TJ | Not<br>considered an<br>import or part<br>of use |



### **Differences for international bunkers**

- Example:
  - Turkish Airlines fuels up in Istanbul for a flight to Cairo.
  - Once in Cairo, they re-fuel at the airport for the flight back to Türkiye.
- Conversely, if EgyptAir bunkers 6 TJ of fuel in Istanbul, it is considered...
  - International bunkers in the energy balances of Türkiye BUT is excluded from total energy supply
  - Exports in the *energy accounts* of Türkiye
- When EgyptAir bunkers in its hometown of Cairo, it is outside the scope of both Türkiye's energy balance and energy account

|                                                      | Accounts             | Balances                            |
|------------------------------------------------------|----------------------|-------------------------------------|
| Fuel bunkered<br>in Istanbul by<br>Turkish           | Part of supply       | Not part of<br>supply               |
| Use of fuel<br>bunkered in<br>Istanbul by<br>Turkish | End use by<br>ISIC H | Not part of<br>final<br>consumption |
| Use of fuel<br>bunkered in<br>Cairo by<br>Turkish    | Import to<br>Türkiye | Not<br>considered an<br>import      |





System of Environmental Economic Accounting

### GOING FROM BALANCES TO ACCOUNTS



#### **Approaches**

- Existing data need to be manipulated and re-arranged according to accounting principles of the System of National Accounts
- Two general approaches used:
  - > "Statistics/energy statistics first"
  - > "Energy balances first"
- Often, second approach is preferred



#### **Steps to get to the accounts**

- Three broad steps:
- 1. Use supply of primary energy products in balances to arrive at natural inputs and supply/use of certain products in accounts
  - Need to use some assumptions to approximate natural energy inputs (and losses during extraction)
- 2. Use transformation block of balances to record transformation of energy products in the accounts
  - Often straightforward adjustments, but one needs to record transformation losses as residuals
- 3. Compile end use of energy products (end use in accounts = final consumption in balances)
  - > Some straightforward adjustments, some more complex adjustments
  - > Record related residuals, usually the identical energy amounts that have been end used
- Illustration of this process using three blocks of the UNSD simplified balance



#### **Total energy supply**

| Energy flow in balances                                                                                                             | Target column in supply/use tables                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary production (e.g. primary<br>coal and peat, primary oil, natural gas,<br>biofuels + waste, nuclear, electricity and<br>heat) | Supply: Natural energy inputs supplied by environment<br>Use: Extracting industries (e.g. ISIC A (agriculture,<br>forestry and fishing; ISIC B (mining) etc) |
| Imports                                                                                                                             | Supply: Rest of world<br>Use: N/A                                                                                                                            |
| Exports                                                                                                                             | Supply: N/A<br>Use: Rest of world                                                                                                                            |
| International marine bunkers                                                                                                        | Supply: ISIC C (manufacturing)<br>Use: ISIC H (transportation)                                                                                               |
| International aviation bunkers                                                                                                      | Supply: ISIC C (manufacturing)<br>Use: ISIC H (transportation)                                                                                               |
| Stock changes                                                                                                                       | Supply: N/A<br>Use: Accumulation                                                                                                                             |

### **Things to remember**

- Balances do not include quantities lost through flaring and venting in primary production, but this is included in SEEA-Energy as part of natural inputs
  - > These natural inputs then flow back to the environment as residuals
- Imports and exports need to be adjusted for residence principle



#### **Transformation**

| Energy flow in balances   | Target column in supply/use tables                                                                                                                                                                                                         |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electricity plants        | Supply: Various, depending on the input, but often ISIC B (mining) or<br>ISIC C (manufacturing)<br>Use: Transformation use by ISIC D (electricity/gas/steam/AC)                                                                            |
| Charcoal plants           | Supply: Often ISIC A (agriculture, forestry, fishing)<br>Use: Transformation use likely by ISIC A or ISIC C (Manufacturing)                                                                                                                |
| Other transformation      | Supply and use: Various, depending on the product (e.g., ISIC B<br>(mining) or ISIC C (manufacturing) etc)<br>Example: Transformation in a coke oven = supply by mining industry<br>(ISIC B) to be used by manufacturing industry (ISIC C) |
| Energy industries own use | Supply and use: ISIC B, C and ISIC D (electricity/gas/steam/AC)                                                                                                                                                                            |
| Losses                    | Supply: Likely ISIC C (Manufacturing), ISIC D<br>(electricity/gas/steam/AC)<br>Use: Environment                                                                                                                                            |



#### **Things to remember**

- Auxiliary information is needed for autoproducers
  - > Autoproducers are not always represented in the transformation block of the balances—they may only part of final consumption
  - > Their transformation use needs to be allocated to the specific ISIC industry
- Example of recording transformation of 20 TJ crude into diesel:
  - > Supply of 20 TJ crude by mining industry (ISIC B)
  - > **Use** of 20 TJ crude by manufacturing (ISIC C) to produce diesel
  - > Supply of diesel by ISIC C
  - > Supply of any residuals (losses during transformation) by ISIC C
  - > **Use** of residuals by the environment



#### **Final consumption**

| Energy flow in balances                | Target column in supply/use<br>tables                                             |           |         |      |        |
|----------------------------------------|-----------------------------------------------------------------------------------|-----------|---------|------|--------|
| Manufacturing,<br>construction, mining | Supply: Depends on ener<br>product<br>Use: ISIC C, ISIC F, ISIC B<br>respectively | rgy<br>5, |         | *    |        |
| Transport: Road                        | <b>Supply:</b> Usually ISIC C (manufacturing)<br><b>Use:</b> Any ISIC!            | Road tra  | ansport |      | ISIC Q |
| Transport: Domestic aviation           | Supply: ISIC C<br>Use: ISIC H                                                     |           |         | etc! | ISIC A |
| Transport: Domestic navigation         | Supply: ISIC C<br>Use: ISIC H                                                     |           |         |      |        |



#### **Final consumption, continued**

| Energy flow in balances           | Target column in supply/use tables                                                                                               |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Agriculture, forestry,<br>fishing | <b>Supply:</b> Usually ISIC A (agriculture, forestry and fishing) or ISIC C<br><b>Use:</b> ISIC A                                |
| Commerce and public services      | <b>Supply:</b> Usually ISIC C or ISIC D (electricity supply)<br><b>Use:</b> Several ISIC categories (e.g. ISIC I, J, K, L, to U) |
| Households                        | <b>Supply:</b> Usually ISIC A, ISIC C (manufacturing) or ISIC D<br><b>Use:</b> Households                                        |
| Other consumers, other transport  | Supply: Depends on energy product<br>Use: Any ISIC!                                                                              |



#### **Things to remember**

- In balances, those undertaking final consumption generally identified by ISIC, e.g. "Agriculture, forestry and fishing" → ISIC A
- Exceptions are for energy industries and transport, with allocation of road transport being the trickiest
- You can calculate a distribution key for road transport by industry using various data sources:
  - > Transport statistics
  - > National vehicle registers
  - Detailed monetary use tables providing information on use of fuels per industry, etc.
- If available, a distribution key for a neighboring or similar country could be used



#### **Other differences**

|                           | Balances                                                    | Accounts                                                                             |
|---------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Imports/exports           | Imports have a positive<br>sign; exports a negative<br>sign | Both imports (supply table)<br>and exports (use table) have<br>positive signs        |
| Stocks/inventories        | Stock build is negative;<br>stock draw is positive          | Stock (use table) build is positive; stock draw is negative                          |
| Statistical<br>difference | Row for statistical difference                              | Having a column (or row) for<br>statistical difference is not<br>always the practice |





System of Environmental Economic Accounting

#### TERMINOLOGY



#### **Differences in terminology**

- Supply
  - > In energy balances, supply is defined as
    - + Primary energy production
    - + Imports of primary and secondary energy
    - Exports of primary and secondary energy
    - International (aviation and marine) bunkers Stock changes

i.e. energy entering into the national territory for the first time, less energy exiting the national territory and stock changes

> In the energy accounts the supply is defined as *production* (*output*) + *imports* 

 Slightly broader conception of supply—includes all energy available for use, including fuel made available through international bunkers

Bridge table for domestic supply and total supply (terajoules)

|                                    | Supply<br>(energy<br>balances) | +Losses during<br>generation of<br>secondary production | +International<br>marine bunkers | Exports | Accumulation | Purchased<br>by residents<br>abroad | Supply<br>(SEEA-<br>Energy) |
|------------------------------------|--------------------------------|---------------------------------------------------------|----------------------------------|---------|--------------|-------------------------------------|-----------------------------|
| Coal                               | 244.1                          |                                                         |                                  | 1.9     | - 21.0       |                                     | 225                         |
| Peat and peat products             |                                |                                                         |                                  |         |              |                                     |                             |
| Oil shale/oil sands                |                                |                                                         |                                  |         |              |                                     |                             |
| Natural gas (extracted)            | 395                            |                                                         |                                  |         |              |                                     | 395                         |
| Natural gas (distributed)          | 166.1                          |                                                         |                                  | 201.0   | 2.0          |                                     | 369.1                       |
| Oil (e.g., conventional crude oil) | 360                            |                                                         |                                  | 361.0   |              |                                     | 721                         |
| Oil (oil products)                 | 996                            |                                                         | 44                               | 80.0    | - 3.0        | 160                                 | 1277                        |
| Biofuels                           | 7                              |                                                         |                                  |         |              |                                     | 7                           |
| Waste                              | 109.1                          |                                                         |                                  | 1.0     | 0.3          |                                     | 110.4                       |
| Electricity                        | 134                            |                                                         |                                  | 100.0   |              |                                     | 234                         |
| Heat                               | 78.5                           |                                                         |                                  |         |              |                                     | 78.5                        |
| Nuclear fuels and other fuels      |                                |                                                         |                                  |         |              |                                     |                             |



Note: Exports are removed before the calculation of net supply or availability in the energy balances and therefore need to be added back in.

#### **Differences in terminology**

#### • Use

- > Energy balances: energy industries own use and final consumption
- > Energy accounts: consumption by industries, households' final consumption, exports, international bunkers and inventory (stock) changes

|                                                        | Final consumption<br>(energy balances) | +International<br>marine bunkers | Exports | Accumulation | Energy sectors<br>use of energy<br>for supporting<br>activities | Purchased<br>by residents<br>abroad | End use<br>(SEEA-<br>Energy) |
|--------------------------------------------------------|----------------------------------------|----------------------------------|---------|--------------|-----------------------------------------------------------------|-------------------------------------|------------------------------|
| Coal                                                   | 21.1                                   |                                  | 1.9     | - 21.0       |                                                                 |                                     | 2                            |
| Peat and peat products                                 |                                        |                                  |         |              |                                                                 |                                     |                              |
| Oil shale/oil sands                                    |                                        |                                  |         |              |                                                                 |                                     |                              |
| Natural gas (extracted)                                |                                        |                                  |         |              |                                                                 |                                     |                              |
| Natural gas (distributed)                              | 77.1                                   |                                  | 201.0   | 2.0          | 2.0                                                             |                                     | 282.1                        |
| Oil (e.g., conventional crude oil)                     | 930                                    |                                  | 361.0   |              |                                                                 |                                     | 1291                         |
| Oil (oil products)                                     | 44                                     | 44                               | 80.0    | - 3.0        | 6.0                                                             | 160                                 | 331                          |
| Biofuels                                               | 7                                      |                                  |         |              |                                                                 |                                     | 7                            |
| Waste                                                  | 78.1                                   |                                  | 1.0     | 0.3          |                                                                 |                                     | 79.4                         |
| Electricity                                            | 131                                    |                                  | 100.0   |              | 3.0                                                             |                                     | 234                          |
| Heat                                                   | 76.5                                   |                                  |         |              | 2.0                                                             |                                     | 78.5                         |
| Nuclear fuels and other fuels not elsewhere classified |                                        |                                  |         |              |                                                                 |                                     |                              |

#### Bridge table for final consumption and end use of energy (terajoules)



#### **Differences in terminology**

- Final consumption
  - > Energy balances:
  - > Energy accounts:



- Final consumption in balances is equivalent to **end use** in the accounts
- Stocks and stock changes
  - > Energy balances:
  - > Energy accounts:



 Inventories and changes in inventories is termed "accumulation" and is part of the use table.



#### Conclusions

- Balances are a good starting point for compiling energy accounts
  - > Many 1:1 transformations
- But this indicates the importance of high-quality basic energy statistics!
- Important to understand terminology of different stakeholders and users
- Start small, make improvements over time
  - > Many countries may start with energy balances, to arrive at accounts which do not have the desired industry disaggregation
  - > Make improvements over time, in collaboration with data providers





System of Environmental Economic Accounting

#### EXERCISE



#### Instructions

- Statisland would like to take the balances to accounts approach to create a physical energy flow account
- They have used the balance and gotten fairly far along, but they are missing some numbers in their tables.
- Can you help them fill in the yellow cells?
- Please note there are some assumptions to be made



#### Assumptions

- Oil products in the country are a mix of gas oil, which goes into electricity production, and transport diesel
- Biofuels are produced by the sugar manufacturing industry
- End use (i.e. final consumption) by non-specified industries in the balance is assumed to be by manufacturing companies, as manufacturing is one of Statisland's largest industries
- According to Statisland's national accounts supply and use tables:
  - > 10% of transport diesel is purchased by the agricultural industry
  - > 10% is purchased by the mining industry
  - > The remainder is purchased by the transportation industry



#### **THANK YOU**

seea@un.org