Accounting for Human Induced Flows in Nature

Matthew Chambers¹, Nils Brown², Kaia Oras³, Aldo Femia⁴, Sjoerd Schenau⁵

September 30, Washington DC

1. U.S. BEA; 2. Stats Sweden; 3. Stats Estonia; 4. Istat; 5. Stats Netherlands

The views expressed in this presentation are those of the authors and do not necessarily represent their respective employers

- SEEA CF physical flow accounts: Flows occurring within the environment are specifically excluded (SEEA-CF 3.23)
- However, several **borderline cases**: physical flows in the environment that are clearly human induced
- Aim of this paper: define human induced flow and propose a framework for recording a these in the physical supply-use tables of the SEEA CF
- Contribute to the following issues in the SEEA CF update issue list:

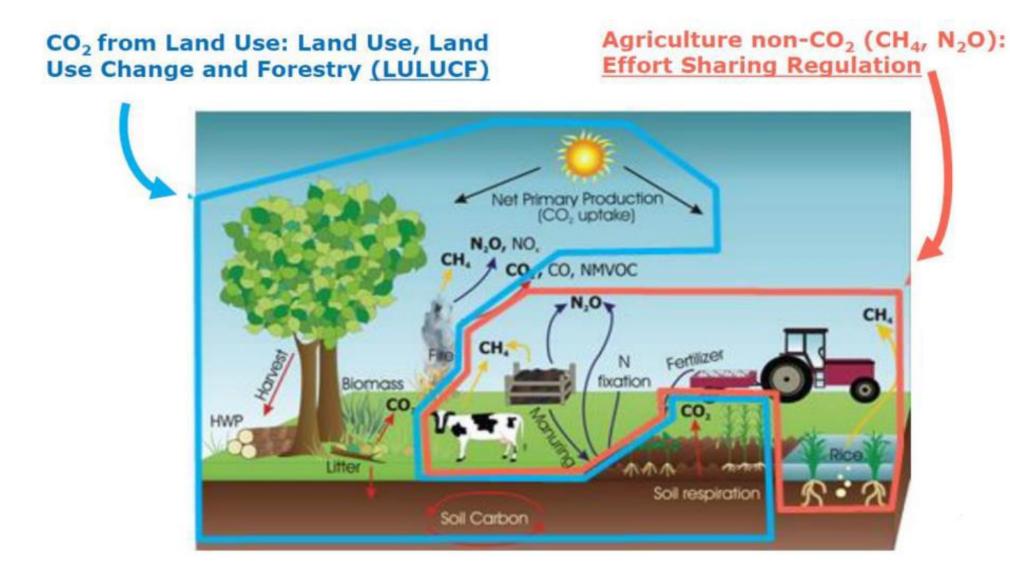
B3: Inclusion of LULUCF in air emission accounts.

B4: Inclusion of carbon flows.

B12: Borderline cases for the production boundary.

- What are "human induced flows in nature"?
- Examples
- Proposed framework
- Recommendations
- Questions for discussion
- Presentation of example from Estonia by Kaia Oras

- "In nature"
- "Human induced"
- Examples
 - \circ LULUCF
 - $_{\circ}~$ Carbon capture and storage
 - $_{\odot}\,$ Secondary atmospheric particle formation
 - $_{\odot}\,$ Transboundary pollution flows
- Currently excluded from SEEA CF
 - \circ In practice
 - \circ Explicitly


• Considerations:

- $_{\odot}~$ Industry/period attribution may be difficult
- $_{\circ}\,$ Analogy with landfill emissions?
- Possible approaches (Schenau 2023):
 - Exclude (status quo)
 - $_{\odot}\,$ Include and attribute to industries/sectors
 - $_{\odot}~$ Include without attributing to industries/sectors

• Proposal:

- $_{\odot}\,$ New (optional) group of columns in PSUTs
- Columns generally represent processes, not industries
- $_{\odot}\,$ Choice of columns to include is left to countries

		ndustries			Accumulation				
Supply	Agriculture	Forestry	Mining/	Gov't	Households	Landfills			
CO ₂	Agriculture 110	20	580	90		0			
CH_4	35	0	0	C	0	16			

		Human Induced Flows in Nature									
Supply		Land Use									
	Forest		Cropland	Wetland	Forest		Cropland	Wetland	Settlement	HWP	Total
CO ₂		30	80	15		0	25	5	35	20	1260
CH_4		0	0	8		0	0	0	0	0	59

			Hum	an Induce	d Flows in N	lature				
Use		Land Use	2		Land U	se Change		_		
	Forest	Cropland	Wetland	Forest	Cropland	Wetland	Settlement	HWP	Environment	Total
CO ₂	400	0	0	45	0	0	0	0	815	1260
CH_4	0	0	0	0	0	0	0	0	59	59

		ndustries			A	ccumulation
Supply			Mining/			
	Agriculture	Forestry	Manuf.	Gov't	Households	Landfills
CO ₂	110	20	580	90) 250	0
CH_4	35	0	0	C) 0	16

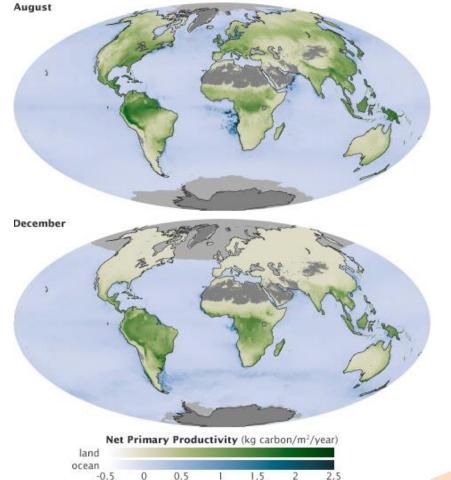
	Human Induced Flows in Nature											I
Supply			Land Use				Land U	se Change				
	Forest		Cropland	Wetland	Forest		Cropland	Wetland		Settlement	HWP	Total
CO ₂		30	80	15		0	25		5	35	20	1260
CH_4		0	0	8		0	0		0	0	0	59

	Human Induced Flows in Nature Use Land Use Land Use Change Forest Cropland Wetland Forest Cropland Wetland Settlement HWP Environment CO2 400 0 0 45 0 0 0 0							-		
Use		Land Use	9		Land U	se Change		_	-	
	Forest	Cropland	Wetland	Forest	Cropland	Wetland	Settlement		Total	
CO ₂	400	0	0	45	0	0	0	0	815	1260
CH_4	0	0	0	0	0	0	0	0	59	59

	8
21/10/202	4

_	Inc	lustries		Accumulation					
Supply			Mining/				Human Induced		
	Agriculture	Forestry	Manuf.	Gov't H	louseholds	Landfills	Flows in Nature	Total	
CO ₂	110	20	580	90	250	0	210	1260	
CH_4	35	0	0	0	0	16	8	59	

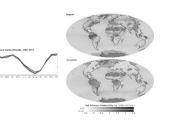
Use	Human Induced								
	Flows in Nature	Environment	Total						
CO ₂	445	815	1260						
CH_4	0	59	59						


- Biogenic vs. fossil carbon
 - $_{\odot}~$ Radiative forcing
 - \circ Policy treatment
 - Biomass fuel is very important in some countries

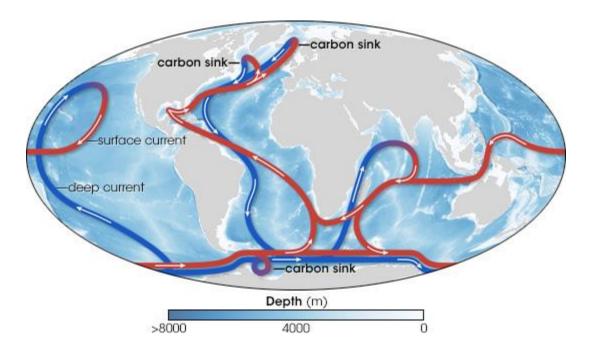
• Biogenic vs. fossil carbon

- Short/fast carbon cycle
 - Biosphere
 - Days to years
 - Biogenic fuel

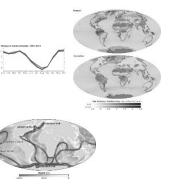
Monthly Change in Carbon Dioxide, 1959-2010 Flux (ppm) °, Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec



1


Graph by Marit Jentoft-Nilsen and Robert Simmon, using data from the NOAA Earth System Research Laboratory. Maps by Robert Simmon and Reto Stöckli, using MODIS data.

- Biogenic vs. fossil carbon
- Short/fast carbon cycle


- Long/slow carbon cycle
 - $_{\circ}~$ Geologic and oceanic
 - Centuries to millions of years
 - \circ Fossil fuel+

Map by Robert Simmon, adapted from the IPCC 2001 and Rahmstorf 2002.

- Biogenic vs. fossil carbon
- Short/fast carbon cycle

- Long/slow carbon cycle
- Differentiating in the accounts
 - Short-cycle CO₂: biofuels and LULUCF
 - $_{\odot}~$ Long-cycle CO_2: all other emissions

		Industries			A	ccumulation
Supply			Mining/			
	Agriculture	Forestry	Manuf.	Gov't	Households	Landfills
Long-cycle CO ₂	110	20	530	90	250	0
Short-cycle CO ₂	0	0	50	0	0	0
CH ₄	35	0	0	0	0	16

Human Induced Flows in Nature Land Use Land Use Change

Supply		Land Use			Land Us				
_	Forest	Cropland	Wetland	Forest	Cropland	Wetland	Settlement	HWP	Total
Long-cycle CO ₂	0	0	0	0	0	0	0	0	1000
Short-cycle CO ₂	30	80	15	0	25	5	35	20	260
CH_4	0	0	8	0	0	0	0	0	59

			-							
Use		Land Use		Land Use Change						
	Forest	Cropland	Wetland	Forest	Cropland	Wetland	Settlement	HWP	Environment	Total
Long-cycle CO ₂	0	0	0	0	0	0	0	0	1000	1000
Short-cycle CO ₂	400	0	0	45	0	0	0	0	-185	260
CH ₄	0	0	0	0	0	0	0	0	59	59

	Human Induced Flows in Nature								Environment		
Use	Land Use		Land Use Change								
USC		-								Geologic	
	Forest	Cropland	Wetland	Forest	Cropland	Wetland	Settlement	HWP	Atmosphere	Storage	Total
Long-cycle CO ₂	0	0	0	0	0	0	0	0	900	100	1000
Short-cycle CO ₂	400	0	0	45	0	0	0	0	-235	50	260
CH ₄	0	0	0	0	0	0	0	0	59		59

- Formed through chemical reactions from:
 - $_{\circ}~$ Sulfur dioxide
 - $_{\circ}~$ Nitrogen oxides
 - $_{\circ}~$ Volatile organic compounds
 - $_{\circ}$ Ammonia
- In some places, a majority of PM 2.5
- Complex; expert consultation needed to characterize

Supply	Ir	ndustries				Human Induced Flows in Nature	
Supply —						PM 2.5-Forming	
_	Agriculture	Utilities	Manufacturing	Gov't	Households	Reactions	Total
Primary PM 2.5	70	100	40	35	40		285
Secondary PM 2.5						400	400
SO ₂	0	130	60	0	0		190
NO _x	0	100	60	50	150		360
NH ₃	350	5	5	5	15		380
VOCs	80	15	250	80	200		625

llee	Human Induced Flows in Nature			
Use	PM 2.5-Forming			
	Reactions	Environment	Total	
Primary PM 2.5	0	285	285	
Secondary PM 2.5	0	400	400	
SO ₂	75	115	190	
NO _x	100	260	360	
NH ₃	200	180	380	
VOCs	275	350	625	

_	Industries				Human Induced Flows in Nature			
Supply						PM 2.5-Forming		
_	Agriculture	Utilities	Manufacturing	Gov't	Households	Reactions	Imports	Total
Primary PM 2.5	70	100	40	35	40		20	305
Secondary PM 2.5						400	50	450
SO ₂	0	130	60	0	0		15	205
NO _x	0	100	60	50	150		70	430
NH ₃	350	5	5	5	15		160	540
VOCs	80	15	250	80	200		60	685

Human Induced Fl	ows in Nature
------------------	---------------

Use	PM 2.5-Forming			
	Reactions	Exports	Environment	Total
Primary PM 2.5	0	40	265	305
Secondary PM 2.5	0	75	375	450
SO ₂	75	30	100	205
NO _x	100	60	270	430
NH ₃	200	130	210	540
VOCs	275	75	335	685

- Extend SEEA-CF to include human induced flows in the environment
- An optional new column group in the PSUTs titled "Human induced flows in nature"
- Countries should choose which human induced flows in nature to include based on magnitude, policy relevance, and data availability
- Include the examples described in this paper in the SEEA-CF

- Other flows in scope for this framework?
- Secondary PM 2.5 formed from anthropogenic and natural reactants?
- Long-cycle/short-cycle methane?
- Peat-related carbon flows: short- or long-cycle?
- Geologic carbon dioxide storage: economy or environment?
- Experiences of countries working along similar lines?