

Services Generation Account

(Levels 0, 1 and 2)

Project: Advancing the SEEA Experimental Ecosystem Accounting

Overview: Services Generation

1. Learning objectives

2. Review of Level 0 (5m)

- What is it?
- Why do we need it?
- What does it look like?
- Expertise & data required
- Links to related training materials

3. Level 1 (Compilers)

- Concepts (15m)
- Group exercise & Discussion (30m)
- 4. Level 2 (Data providers)
 - Data options, examples & issues (15m)
 - Group exercise & Discussion (15m)
- 5. Closing Discussion (10m)

© wiktor bubniak / Fotolia.com

SEEA-EEA Training Levels 1 and 2

Learning objectives

- Level 1: To understand:
 - Why accounting for Ecosystem Services is important
 - The basics of the "ecosystem services cascade" and the difference between its components
 - How Services Generation is treated in the SEEA, including basic concepts and the structure of the accounts that include services
 - How to start to build a Services Generation account
- Level 2
 - Understand the data options and sources
 - Be aware of how other countries have approached Ecosystem Services Generation

Account 6: Services Generation

- What?
 - Physical and monetary flows of "final" ecosystem services from ecosystems to beneficiaries
 - Directly used by (or affect) people
- Why?
 - Inform policies of contribution of ecosystems to human well-being
 - Assess trade-offs between development and conservation
 - Links to standard economic production measures in SNA
 - Links to other SEEA-EEA accounts (Condition, Supply and Use) and tools (Valuation)
 - Indicators:
 - Flows of individual services (physical and monetary) \rightarrow change
 - Indices of aggregated services by ecosystem type → change

• What does a Services Generation Account look like?

Maps Tables **Ecosystem type** Land cover Urban and Type of service associated Forest tree cover Agricultural land Open wetlands e.g., tonnes of e.g., tonnes of Provisioning timber wheat Cultural e.g., tonnes of e.g., tonnes of e.g., tonnes of CO_2 stored / CO_2 stored / CO₂ stored / e.g., tonnes of Regulating released released released P absorbed e.g., hectares of e.g., number of e.g., hectares Regulating Cultural visitors / hikers of duck habitat parkland Provisioning Lookup tables **Biophysical modelling**

Example (services in physical units)

						Land	cover ty	ре			
										Other	Provincial
Ecosy	Ecosystem service		Urban	Pasture	Cropland	Forest	Heath	Peat	Water	nature	total
	Hunting	kg meat	-	9,100	14,732	8,100	678	70		1,513	34,193
	extraction	10 ³ m ³ water	4,071	7,026	11,227	3,117	214	1	478	862	26,995
Provisioning	Crop production	10 ⁶ kg produce	-	-	1,868	-	-	-	-	-	1,868
		10 ⁶ kg dry matter		533	251						784
	Air quality regulation	10 ³ kg PM ₁₀	272	404	717	700	45	7	40	69	2,254
-	Carbon sequestration	10 ⁶ kg carbon	875	8,019	273	50,664	393	149	-	1,056	61,429
Cultural	Recreational cycling	10 ³ trips	2,690	1,863	2,611	1,565	30	3	139	220	9,121

Source: Remme et al., 2014 (Limburg, the Netherlands)

- What does a Services Generation Account look like?
 - Spatially-detailed physical measures of "final" services according to common classification:
 - Provisioning
 - Regulating
 - Cultural
 - Physical measures (crops, flood control, clean drinking water, carbon sequestration, recreation, ...)
 - Monetary measures where appropriate and available
 - → Ecosystem Services Supply Account

- What do you need to create a Services Generation Account?
 - Ecosystem Extent Account, Ecosystem Condition Account
 - Common spatial infrastructure (spatial units)
 - Common classification of services
 - Data:
 - Field studies
 - Transfer from other locations (benefits transfer, valuation)
 - Economic production (agriculture, forestry, fisheries, water)
 - Biophysical modelling
 - **Expertise**: ecologists, geographers (GIS), economists, policy analysts, statisticians

- Why Services Generation Accounts?
- Ecosystems provide services that are essential to the economy and human activities:
 - Food supply
 - Clean water
 - Flood protection
 - Carbon sequestration
 - Recreation, cultural and religious importance
- Ecosystems are being converted and degraded
 - Which ones are most important to conserve?
 - How can they best be managed to maintain services?
 - Link with national planning and accounting to ensure ecosystems are included in decisions

The Ecosystem Services Cascade

Source: Nottingham School of Geography

 Services are the contribution of ecosystems to a benefit for people...

Ecosystem services (versus benefit)

Produced capital, labour

An ecosystem service is the contribution (by the ecosystem) to a benefit (for people)

Level 1: Account 6: Services Generation

- Services are the contribution of ecosystem to the benefits for people...
 - They are **not** the benefits; benefits require capital and labour to use
 - We need to calculate the contribution of ecosystems, for example:

Crops = f(nature, equipment, inputs, labour, energy...)

To grow crops, nature provides biomass growth, nutrients, water, flood control, pollination...

Without these, there would be no crops. In the Services Generation Account, we measure the physical services (e.g., the crop).

Types of Ecosystem Services

Ecosystem services and maps

- The SEEA-EEA focuses on "final services"
 - The point before human involvement transforms the services to benefits
 - e.g., biomass \rightarrow harvesting; fish \rightarrow capture...
 - Ecosystem processes and functions are **not** services
 - e.g., reproduction, predation, food web, nutrient cycle...
 - **Biodiversity** itself is not a "final" service
 - It is an aspect of Ecosystem Condition and is recorded in the Biodiversity Account.

Level 1: Account 6: Services Generation

- Services
- Based on Common International Classification of Ecosystem Services (CICES)
- Not mutually exclusive
- A list of "final" services
- More detail (4-digit)
- Does not include "supporting services" (= ecosystem functions)

Section	Division	Group					
	01.01 Nutrition	01.01.01 Biomass					
	01.01 NUTRION	01.01.02 Water					
01. Provisioning	01 02 Matorials	01.02.01 Biomass					
or. Provisioning		01.02.02 Water					
	01.03 Energy	01.03.01 Biomass-based energy sources					
	01.05 Ellergy	01.03.02 Mechanical energy					
	02.01 Mediation of waste,	02.01.01 Mediation by biota					
	toxics and other nuisances	02.01.02 Mediation by ecosystems					
		02.02.01 Mass flows					
	02.02 Mediation of flows	02.02.02 Liquid flows					
		02.02.03 Gaseous / air flows					
02. Regulation &		02.03.01 Lifecycle maintenance, habitat and gene pool					
Maintenance		protection					
	02.03 Maintenance of	02.03.02 Pest and disease control					
	physical, chemical,	02.03.03 Soil formation and composition					
	biological conditions	02.03.04 Water conditions					
		02.03.05 Atmospheric composition and climate					
		regulation					
	03.01 Physical and intellectual interactions	03.01.01 Physical and experiential interactions					
03. Cultural	with biota, ecosystems, and land-/seascapes [environmental settings]	03.01.02 Intellectual and representative interactions					
	03.02 Spiritual, symbolic and other interactions with	03.02.01 Spiritual and/or emblematic					
	biota, ecosystems, and land- /seascapes [environmental settings]	03.02.02 Other cultural outputs					

Source: CICES, 2013. www.cices.eu

- How?
 - Direct measure (e.g., socio-economic survey on recreational use, field survey of available fish...)
 - **Remember** Level 0 Biophysical modelling?
 - Lookup tables: Take values from another location
 - Statistical approaches: Estimate based on known explanatory variables
 - Geostatistical interpolation: Estimate from nearby known locations
 - Process-based modelling: Use models of processes (e.g., land cover change, demand for services...)
 - The group exercise will use only Lookup Tables...

- Compilation Group Exercise (30m)
 - Situation:
 - Know total services for some LCEUs
 - **Need to** calculate:
 - Missing services for based on known data and lookup table
 - Objective (Groups of 3-5):
 - 1. Calculate missing services
 - 2. Calculate totals
 - 3. Report and discuss results

Group Exercise: Step 1 – Calculate unknown services

e.g., Crop for LCEU04 = (18,700 / 500) * 281.3				e.g., Carbon for LCEU04 = (500 * 20)				
Services Generation Database								
		(Cro	C)	(R) Recreation	(W) Water	(S) Ca Sequest		
	Extent			neoreation		tonnes		
LCEU	(ha)	tonnes/ye	ar	trips/year	m³/year	/ha/year	/year	
LCEU01 = Rainfed herbaceous cropland	500.0	18,700		500.0	600.0	20		
LCEU02 = Forest tree cover	262.5	C	0.0	1,500.0	500.0	30		
LCEU03 = Inland water bodies	68.8	0	0.0	1,600.0	15,000.0	5		
LCEU04 = Rainfed herbaceous cropland	281.3					20		
LCEU05 = Forest tree cover	75.0					30		
LCEU06 = Urban and associated developed	56.3	0	0.0	500.0	500.0	0		
LCEU07 = Urban and associated developed	68.8	0	0.0	700.0	400.0	0		
LCEU08 = Open wetlands	37.5	700	0.0	5,000.0	10,000.0	40		
LCEU09 = Inland water bodies	50.0					5		
LCEU10 = Forest tree cover	225.0					30		
LCEU11 = Rainfed herbaceous cropland	175.0					20		
Total	1,800.0							

- Is everyone clear on the objectives?
- 30 minutes group work
- Please ask questions!
- Results:
 - Each group report:
 - Totals for each service
 - Which LCEU generates the most of each service?
 - Were there any surprises?

	Services Generation Database						
			(-)	(=)	(1.1.1)	(2) 2	.
			(C)	(R)	(W)	(S) Ca	
			Crop	Recreation	Water	Seques	ration
		Extent				tonnes	tonnes
	LCEU	(ha)	tonnes/year	trips/year	m³/year	/ha/year	/year
	LCEU01 = Rainfed herbaceous cropland	500.0	18,700.0	500.0	600.0	20	
	LCEU02 = Forest tree cover	262.5	0.0	1,500.0	500.0	30	
	LCEU03 = Inland water bodies	68.8	0.0	1,600.0	15,000.0	5	
	LCEU04 = Rainfed herbaceous cropland	281.3				20	
	LCEU05 = Forest tree cover	75.0				30	
	LCEU06 = Urban and associated developed	56.3	0.0	500.0	500.0	0	
	LCEU07 = Urban and associated developed	68.8	0.0	700.0	400.0	0	
	LCEU08 = Open wetlands	37.5	700.0	5,000.0	10,000.0	40	
	LCEU09 = Inland water bodies	50.0				5	
	LCEU10 = Forest tree cover	225.0				30	
	LCEU11 = Rainfed herbaceous cropland	175.0				20	
)	Total	1,800.0					

- Learning objectives (Level 2)
 - Understand the data options and sources
 - Be aware of how other countries have approached Services Generation Accounting

- A full Services Generation Account is more complex than the exercise:
 - More services (48 "final" services in CICES)
 - More types of data (tonnes, risks, visitors, air quality, cultural significance...)
 - Less measured data \rightarrow need models to estimate
 - High variability among ecosystem types and region (e.g., salt marsh carbon = 650 to 1750 tCO₂/ha/year)
- **Do not** need to include all services:
 - High priority services \rightarrow measure or estimate
 - Get started with available data

Ecosystem services in an account

- Ecosystem service account developed for Limburg Province, the **Netherlands** С
- 2200 km², 1.1 million inhabitants
- Analysis of 7 ecosystem services

Source: Remme et al., 2014

Example (services in physical units)

		[[
			Land cover type									
										Other	Provincial	
Ecosystem service		Units	Urban	Pasture	Cropland	Forest	Heath	Peat	Water	nature	total	
	Hunting	kg meat	-	9,100	14,732	8,100	678	70		1,513	34,193	
	Drinking water extraction	10 ³ m ³ water	4,071	7,026	11,227	3,117	214	-	478	862	26,995	
Provisioning	Crop production	10 ⁶ kg produce	-	-	1,868	-	-	-	-	-	1,868	
	Fodder production	10 ⁶ kg dry matter		533	251						784	
Regulation	Air quality regulation	10 ³ kg PM ₁₀	272	404	717	700	45	7	40	69	2,254	
	Carbon sequestration	10 ⁶ kg carbon	875	8,019	273	50,664	393	149	-	1,056	61,429	
Cultural	Recreational cycling	10 ³ trips	2,690	1,863	2,611	1,565	30	3	139	220	9,121	
		· · · · · · · · · · · · · · · · · · ·										

Note: Units of measure are **very** different

Source: Remme et al., 2014 (Limburg, the Netherlands)

- Data options and sources
 - Field studies
 - Literature on similar sites or specific research
 - Transfer from other locations (benefits transfer, valuation)
 - Ecosystem valuation research databases (e.g., <u>www.evri.ca</u>)
 - Economic production (agriculture, forestry, fisheries, water)
 - Socio-economic statistics already available with spatial detail
 - Biophysical modelling
 - Know conditions, can estimate some services using production functions (e.g., hydrography → flood control)

Level 2: Account 6: Services Generation

Canada Example:

Water purification potential and change by drainage area for boreal wetlands

Index based on:

- % forest cover
- % agricultural land
- % riparian forest
- % wetlands
- % anthropogenic disturbance
- % burn area
- Edge & linear density (fragmentation)
- Human footprint
- Slope
- Nitrogen & Sulphur exceedance (from atmospheric deposition)

Source: Statistics Canada, 2013

Level 2: Account 6: Services Generation

Canada example

Net biomass extraction for human use

Includes:

- Agricultural crops
- Livestock and poultry
- Milk
- Maple products and honey
- Forestry
- Fisheries (inland and marine)

Source: Statistics Canada, 2013

Level 2: Account 6: Services Generation

Canada example

Weight of commercial fish landings by marine statistical area

Includes:

- Groundfish
- Pelagic fish
- Shellfish

Also done for west coast

Statistical area defined by Ministry of Fisheries and Oceans

Source: Statistics Canada, 2013

Services flow data commonly available

Service	Flow measure						
Provisioning services							
Timber services	timber increment						
Crops	crop production						
Livestock	livestock production						
Water provision	annual freshwater supply						
Regulating services							
Water quantity regulation	total amount of water stored						
Water quantity regulation	total amounts of pollutants removed annually						
Climate regulation	n annual carbon fixation						
Storm protection	total number of storms mitigated						
Air quality regulation	total amount of pollutants removed via dry deposition on leaves						
Erosion control	total amount of soil retained						
Pollination	increased yield of crops due to pollination						
Soil quality regulation	increased yield of crops attributable to soil quality						
Cultural services							
Recreation	number of visitors						
Source: (Maes, Paracchini et al. 2	011)						

Level 2: Account 6: Services Generation

Data sources: Socio-economic statistics

- Agricultural statistics: crop, livestock production
- Energy statistics: biomass for fuel
- Fisheries statistics: catch, stock
- Forestry statistics: timber stock, harvest
- Park surveys: visitors, use
- Water statistics: withdrawals, consumption
- Natural disasters: incidence of floods, erosion, storms
- Soil inventories: erosion potential
- Health statistics: regulation of biotic environment
- Are these spatially-detailed national data?
- Do we know the methods and classifications?

- Data sources: Environmental statistics
 - Iconic species & habitats
 - Land cover \rightarrow carbon sequestration, air filtration
 - Hydrology & weather data: Flow rates, variability → flood risk
 - Topography, land cover, soil & weather data → erosion and landslide risk
 - Carbon storage and sequestration (see Carbon Accounts)
 - Remote sensing \rightarrow primary production
 - Are these spatially-detailed national data?
 - Do we know the methods and classifications?

- Data sources: Ecosystem valuation databases
 - Based on codifying scientific studies
 - Include data for many countries, ecosystem type, physical services measures
 - Environmental Valuation Reference Inventory (<u>www.evri.ca</u>)
 - TEEB Ecosystem Service Valuation Database (<u>ESVD</u>)
 - Gulf of Mexico Ecosystem Services Valuation Database (www.gecoserv.org)
 - Need to understand location, definitions and methods used

- Data sources: Specific studies & models
 - These may not be included in databases
 - Specific studies:
 - National or regional ecosystem assessments (Millennium Ecosystem Assessment, UK National Ecosystem Assessment)
 - Small-area studies (e.g., one park, one region)
 - TEEB studies and country studies (multiple ecosystems and services)
 - Decision-support models
 - There are landscape-scale and site-scale models that can help estimate service flows (AIRES, InVEST, LUCI...)
 - See Biophysical Modelling

- Data sources: Special surveys and case studies
 - High-priority data gaps may also be addressed by collecting new data
 - Ecological field studies to determine "production functions"
 - Socio-economic surveys to determine use of services (e.g., water, food, recreation)
 - Case-studies for specific locations or social groups (e.g., dependence on nature of low-income residents)
 - Possible to add questions to existing surveys, for example,
 - Households use of water, source of food, incidence of hazards (flooding, erosion, drought, disease), source of biomass for fuel

- Group exercise (15m) (Groups of 3-5)
- In your country, what are three important ecosystem services that should be included in a Services Generation Account?
- 2. Which land cover types generate them?
- 3. What **national data** are available in your country on the generation of these services?
- 4. Report your results

- Concepts Group exercise (15m)
- Group reports
 - The ecosystem services you selected
 - The main land cover types for each
 - Are **national data** available in your country on the generation of these services?
- Discussion
 - What other ecosystem services would be important to measure?
 - On what topic might a special survey be used to fill priority data gaps?

- Discussion and questions
- Take home points
 - Services Generation in biophysical terms is one of the most important aspects of Ecosystem Accounting
 - Data on Services Generation are available from many sources
 - There are some simple methods available to start to integrate these data
 - Start by focussing on available data and priority services

Level 2: Account 4: Carbon

- Further Information
 - SEEA Experimental Ecosystem Accounting (2012)
 - SEEA-EEA Technical Guidance (forthcoming)
 - Detailed supporting documents
 - " "Linking Flow and Asset Accounts" and
 - " "Biophysical Modelling" by Lars Hein

References

- CICES, 2013. <u>www.cices.eu</u>
- European Commission, Organisation for Economic Co-operation and Development, United Nations and World Bank 2013, SEEA Experimental Ecosystem Accounting, <u>http://unstats.un.org/unsd/envaccounting/seeaRev/eea_final_en.pdf</u>
- Maes, J., Paracchini, M.L. and Zulian, G., 2011. A European assessment of the provision of ecosystem services: Towards an atlas of ecosystem services. Luxembourg: European Commission Joint Research Centre-Institute for Environment and Sustainability.
- Malouin, C., Doyle, M. and Liss, K., 2013. Toward an Ecosystem Potential Index for Canada (EPIC): A Boreal Case Study. ResearchGate.net, .
- Nottingham School of Geography, nd, Nature's services in decision making. <u>http://www.nottingham.ac.uk/geography/research/research-that-makes-a-difference/natures-services-and-decision-making.aspx</u>
- Remme, Roy P., Matthias Schröter, and Lars Hein. Developing spatial biophysical accounting for multiple ecosystem services. Ecosystem Services 10 (2014): 6-18.
- Statistics Canada, 2013. Human Activity and the Environment: Measuring Ecosystem Goods and Services 2013. 16-201-XWE. Ottawa: Government of Canada.

Evaluation of the training module

- Please complete the evaluation form for this module
- For this module
 - What did you learn that you could apply in your work?
 - Was the presentation clear and informative?
 - Was it too simple? Too complex?
 - Was there anything you did not understand?
 - What additions or deletions would you suggest (recognizing that the unit is intended for a general audience)?
 - Do you have any suggestions as to how the SEEA-EEA may be improved (concepts, principles) in this area?

Acknowledgements

 This project is a collaboration of The United Nations Statistics Division, United Nations Environment Programme and the Secretariat of the Convention on Biological Diversity and is supported by the Government of Norway.

