

Water Account (Levels 1 and 2)

Project: Advancing the SEEA Experimental Ecosystem Accounting

Overview: Water Account

- 1. Learning objectives
- 2. Review of Level 0 (5m)
- 3. Level 1 (Compilers)
 - Concepts (15m)
 - Group exercise & Discussion (30m)

4. Level 2 (Data providers)

- Data options, examples & issues (15m)
- Group exercise & Discussion (15m)
- 5. Closing Discussion (10m)

© wiktor bubniak / Fotolia.com

Levels 1 and 2: Water Account

- Learning objectives
 - Level 1:
 - Understand why Water Accounts are important and how they link to policy
 - Understand the basic concepts of Water Accounting
 - Understand how water is treated in the SEEA
 - Learn the steps of compiling a Water Account
 - Level 2
 - Understand the data options and sources
 - Understand the important conceptual issues
 - Be aware of how other countries have approached Water Accounting

Review of Level 0: Water Account

Account 3: Water

Level 0: Account 3: Water

• What?

- Spatially-detailed version of SEEA-CF Water Account to capture:
 - Inter-ecosystem flows of water (SEEA-EEA 4.62),
 - Water quality and
 - Supply/use for ecosystems
- Why?
 - Policies on water security, water quality, impacts of water abstraction on ecosystems
 - Links to other accounts (Condition, Services Supply & Use)
 - Links to SEEA-CF; SEEA-WATER
 - Indicators:
 - Local water supply/use, quality (use > supply?)
 - Variability in supply, trends (droughts, floods)

What does a Water Account look like?

Maps

	Use of water							
		Mining &	Electricity,					
		quarrying,	gas, steam	Water				
	Agriculture,	manufacturing	and air	collection,				
	forestry and	and	conditioning	treatment and		Other		
	fishing	construction	supply	supply	Sewerage	industries	Households	Total use
	millions m ³							
Source of abstracted water								
Inland water resources								
Surface water								
Goundwater								
Soil water								
Total								
Other water sources								
Precipitation								
Sea water								
Total								
Total use of abstracted water								
Abstracted water								
Distributed water								
Own use								

Tables

Spatial units Classifications Biophysical modelling Socio-economic data

- What does a Water Account look like?
 - Spatially-detailed data on:
 - Stock
 - Supply, and
 - Use including soil moisture & groundwater
 - Water quality measures (contribution to **Condition Account**)

- What do you need to compile a Water Account?
 - Ecosystem Extent Account
 - SEEA-CF Water Account (national level)
 - Common spatial infrastructure (Spatial Units)
 - Data:
 - Spatially-detailed supply (rainfall, transfers)
 - Use (abstraction, inter-ecosystem transfers);
 - Water quality measures
 - Expertise:
 - Geographers (GIS and remote sensing)
 - Hydrologists
 - Ecologists
 - Climatologists

Level 1: Water Account

- Learning objectives
 - Level 1:
 - Understand why Water Accounts are important and how they link to policy
 - Understand the basic concepts of Water Accounting
 - Understand how water is treated in the SEEA
 - Learn the steps of compiling a Water Account

Why water and ecosystem accounts?

- Increasing human pressure on water and ecosystems from:
 - Extraction of water
 - Pollution of water
 - Degradation and depletion of ecosystems (e.g. conversion of forests to palm oil plantations) changes the local water balance
- Comprehensive information on water and ecosystems will support assessing the impact of:
 - Changes in vegetation cover and land use on water stocks and water provisioning and filtration services
 - Policies for managing water and ecosystems on the economy:
 - e.g., restricting human activity in catchments used for water supply
 - e.g., limiting the amount of water available for extraction by industry (e.g. agriculture).

Level 1: Account 3: Water

Accounts and data

"Lack of *integrated* water data is a systematic impediment to informed decision making related to the sustainable use of water resources. Data are needed to provide information not just about water quantity, both on the surface and underground, but also about its *quality, social and economic relations as well as environmental dimensions.*"

Conclusion from Session 6.4 "Data for All" of the 5th World Water Forum

 Accounts provide a framework for arranging data. They enable data from different sources to be integrated. They also enable gaps and deficiencies in primary data sources to be identified and addressed.

Water policy issues and ecosystems

http://unstats.un.org/unsd/envaccounting/WWAP_UNSD_WaterMF.pdf

- Concepts
 - The hydrological cycle
 - Stocks, supply, abstraction and use

The Hydrological Cycle

Water stocks and flows diagram

Water asset account (from diagram)

	Type of water resourcs						
	Surface water						
	Artificial		Rivers and	Glaciers,			
	reservoirs	Lakes	streams	snow and ice	Goundwater	Soil water	Total
(A) Opening stock	1,500	2,700	5,000	-	100,000	500	109,700
Additions to stock							
(B) Returns (from Economy)	-	-	-	-	56	-	56
(C) Precipitation	124	246	50	-	$\left(\right)$	23,015	23,435
(D) Inflows from other territories	-	-	17,650	-	-		17,650
(E) Inflows from other inland water	1,054	700	640	-	180	90	2,664
(F) Discoveries of water in aquifers					-		-
(G) Total additions to stock	1,178	946	18,340	-	236	23,105	43,805
Reductions in stock							
(H) Abstraction (to Economy)	280		141	-	476	50	947
(I) Evaporation and evapotranspiration	80	215	54	-		21,250	21,599
(J) Outflows to other territories			9,430	-	-		9,430
(K) Outflows to the sea			10,000	-	-		10,000
(L) Outflows to other inland water	890	640	1,754	-	90	180	3,554
(M) Total reductions in stock	1,250	855	21,379	-	566	21,480	45,530
Closing stock	1,428		1,961		99,670	2,125	107,975

Physical Water Use Table (from Diagram)

	Use of water					
		Electricity,	Water			
	Agriculture,	gas, steam	collection,			
	forestry and	and air	treatment	Other		
	fishing	conditioning	and supply	industries	Households	Total use
Sources of abstracted water						
Inland water resources						
Surface water	-	2,000	1,150	50	10	3,210
Groundwater	508		-	-	20	520
Soil water	20,000	-	-	-	-	20,000
Sea water		-	50	-	-	50
Total abstracted water	20,500	2,000	1,200	50	30	23,780
Abstracted water						
Distributed water (to other econmic units)	-	-	1,000	-	-	
Use of water (from other economic units)	600	150	-	50	200	1,000
Own use	20,500	2,000	200	50	30	22,780
Total use of water (abstracted and distributed water)	21,100	2,150	200	100	230	23,780

- Compilation Group Exercise (30m)
 - Situation:
 - 1. Have a simplified Stock and Flow Diagram
 - 2. Have a simplified Water Use Diagram
 - Objective (Groups of 3-5):
 - 1. Compile a Water Asset Account
 - 2. Compile a Water Use Table
 - 3. Report results

Level 1: Account 3: Water

Group Exercise: Exercise 1 – Water Asset Account

Level 1: Account 3: Water

Group Exercise: Exercise 2 – Water Use Table

- Is everyone clear on the objectives?
- 30 minutes group work
- Please ask questions!
- Results:
 - Each group report:
 1. Opening and closing stock
 - 2. Total use of water
 - Bonus questions:
 - 1. What was the largest source of reductions in stock?
 - 2. What is the main use of water?

Level 2: Water Account

- Learning objectives (Level 2)
 - Understand the data options, sources and methods used
 - Understand the important conceptual issues
 - Be aware of how other countries have approached Water Accounting

Level 2: Account 3: Water

Data Options:

- Types of water data
 - Stock, supply, use,
 - Water quality
- Sources of national and global water data

Data sources by type:

- Survey data (e.g. agricultural survey)
- Administrative data (e.g., water consumption)
- Hydrological/meteorological data (e.g., rainfall)
- Research data (e.g., case studies)
- Land cover data
- Water quality data

Level 2: Account 3: Water

Data sources by agency:

- Government agencies responsible for:
 - Water, meteorology, hydrology, statistics, agriculture, environment, energy (especially hydro-power), planning, finance, geology
 - National, state/provincial or local government
- Water suppliers and wastewater treatment
- Water research organisations (e.g. government agencies, universities)
- Non-government organisations

 (e.g. water industry associations, farmer associations, conservation groups, etc.)

- Global data sources
- Data on water and land cover are available from international agencies or research organisations:
 - FAO Aquastat
 <u>http://www.fao.org/nr/water/aquastat/main/index.stm</u>
 - WHO World Climate Data and Monitoring Program (WCDMP)
 <u>http://www.wmo.int/pages/prog/wcp/wcdmp/index_en.php</u>
 - WMO World Hydrological Cycle Observing System (WHYCOS) <u>http://www.whycos.org/whycos/</u>

Types of water quality indicators (examples)

Indicator	Notes	Water	Ecosystem	
		quality	condition	
Nutrient levels and pollution loads	E.g. N,P,K levels, heavy metals and pesticides	Higher levels mean lower water quality and limits the possible uses of the water	Can lead to a change in the composition of aquatic species (e.g. fish kills)	
Sediment load	e.g. small particles in the water resulting from soil erosion	Higher loads mean lower water quality and limits possible uses of water	Can lead to a change nature of downstream ecosystems (e.g. siltation of rivers and impact on marine ecosystems)	
Species richness and abundance	This is a measure of the number, type (e.g. vascular plants, invertebrates, fish) of species occurring in the water.	Particular species or groups of species are sensitive to changes in the levels of nutrients or sediments loads and hence species richness and abundance is a proxy for water quality	Biodiversity is an indication of ecosystem condition.	

Level 2: Account 3: Water

Guidelines on methods:

- International Recommendations for Water Statistics (IRWS)
- Guide to Meteorological Instruments and Methods of Observation
- Guidelines on the Role, Operation and Management of National Hydrological Services
- International Benchmarking Network for Water and Sanitation Utilities
- A System of Integrated Agricultural Censuses and Surveys
- ISO (e.g. ISO 19115 for geographic information)
- Statistical Data and Metadata Exchange (or SDMX)
- World Meteorological Organisation Core Metadata Standard
- Infrastructure for Spatial Information in the European Community (INSPIRE)
- Global Annual Assessment of Sanitation and Drinking Water
- MDG reporting standards (for water supply and sanitation)

- Common problems in compilation of water accounts:
 - Classification of units to industry especially those engaged in multiple activities (e.g. water supply, sewerage and hydroelectricity generation)
 - In most countries national accounts do not separate the water supply and sewerage industries
 - Recording of losses in distribution and the flows for use of water in hydro-electricity and water for cooling
 - Boundary between environment and the economy, especially artificial reservoirs
 - **Spatial referencing** economic data refers to administrative boundaries while hydrological data refers to river basins
 - Confidentiality of business data
 - Data quality
 - Scale of data (national level data may hide regional variation)
 - Seasonality: Annual averages may hide seasonal variation and extremes (e.g., floods and droughts)

Other conceptual issues:

- Inter-ecosystem flows:
 - Ecosystems are suppliers and users of water
- Treatment of rivers, coasts, marine Spatial Units
 - Need a coherent spatial database to analyse flows
- Treatment of snow, permafrost
 - Is it included in the "stock"?
- Large stocks
 - May be difficult to measure (e.g., Canada has over 1 million lakes)

- Some Global and country examples:
 - UNEP-WCMC: Composite map of global ecosystem assets (Freshwater component)
 - Australia: Water Accounts
 - Canada: Freshwater Supply and Demand

Level 2: Account 3: Water

 UNEP-WCMC: Composite map of global freshwater resources

Source: Dickson, Blaney et al. (2014) 38

m3)

000

Ξ

Ę

Level 2: Account 3: Water

Australia`s water accounts are not just tables

Canada's Freshwater Supply and Demand

- Group exercise (15m) (Groups of 3-5)
- 1. What is the main water issue in your country?
- 2. Suggest **three** measures that could be used to address it?
- 3. Report:
 - The water issue you selected
 - The three measures you selected
 - Are **national** data available in your country for these measures?

- Concepts Group exercise (15m)
- Group reports
 - Water issue you selected
 - The three measures you selected
 - Are national data available in your country for these measures?
- Discussion
 - What other measures could you suggest?
 - What other data sources could you suggest?

- Discussion and questions
- Take home points
 - Water accounting can address a range of policies related to:
 - Improving access to drinking water and sanitation services
 - Managing water supply and demand
 - Improving the condition and services provided by waterrelated ecosystems
 - Adaptation to extreme events (flooding and drought)
 - It is not necessary to compile complete water accounts
 - Address national policy priorities with available data
 - National data, global data and guidance are available to get started

Level 2: Account 3: Water

References

- Australian Bureau of Statistics (2014). Water Account, Australia, 2012-13. <u>http://www.abs.gov.au/ausstats/abs@.nsf/mf/4610.0</u>
- Dickson, B., Blaney, R., Miles, L., Regan, E., van Soesbergen, A., Väänänen, E., . . . van Bochove, J. (2014). *Towards a global map of natural capital: Key ecosystem assets.* (No. DEW/1824/NA). Nairobi, Kenya: UNEP.
- Statistics Canada. (2010). Human activity and the environment: Freshwater supply and demand in Canada (2010). (No. 16-201-XWE). Ottawa: Government of Canada.
- UNSD (2009) 5th World Water Forum Istanbul: Topic 6.4 Data for All, Turkey, http://unstats.un.org/unsd/envaccounting/workshops/wwf2009/topicOutline.pdf
- Vardon, M., Lenzen, M., Peevor, S., & Creaser, M. (2007). Water accounting in Australia. Ecological Economics, 61(4), 650-659.
- Further Information
 - <u>SEEA Experimental Ecosystem Accounting (2012)</u>
 - SEEA-EEA Technical Guidance (forthcoming)
 - Detailed supporting document on "<u>Water and ecosystem</u> accounting" by Michael Vardon

Evaluation of the training module

- Please complete the online evaluation form for this module: <u>http://www.tinyurl.com/pbopmy2</u>
- For this module
 - What did you learn that you could apply in your work?
 - Was the presentation clear and informative?
 - Was it too simple? Too complex?
 - Was there anything you did not understand?
 - What additions or deletions would you suggest (recognizing that the unit is intended for a general audience)?
 - Do you have any suggestions as to how the SEEA-EEA may be improved (concepts, principles) in this area?

Acknowledgements

- This project is a collaboration of The United Nations Statistics Division, United Nations Environment Programme and the Secretariat of the Convention on Biological Diversity and is supported by the Government of Norway.
- Contact: <u>seea@un.org</u>

