Condition Account

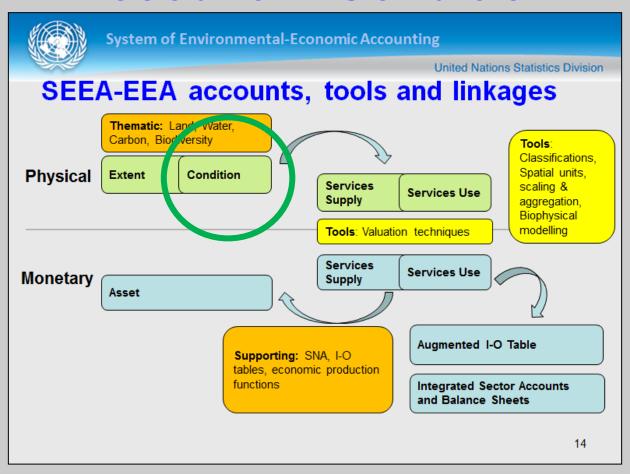
(Levels 1 and 2)

Project: Advancing the SEEA Experimental Ecosystem Accounting

Overview: The Condition Account

- 1. Learning objectives
- 2. Review of Level 0 (5m)
- 3. Level 1 (Compilers)
 - Concepts (15m)
 - Group exercise & Discussion (30m)
- 4. Level 2 (Data providers)
 - Data options, examples & issues (15m)
 - Group exercise & Discussion (15m)
- 5. Closing Discussion (10m)

© wiktor bubniak / Fotolia.com


SEEA-EEA Training Levels 1 and 2

Learning objectives

- Level 1:
 - Understand the basic concepts of the Condition Account
 - Learn the steps of compiling a Condition Account
- Level 2
 - Understand the data options and sources
 - Understand the important conceptual issues
 - Be aware of how other countries have approached measuring Condition

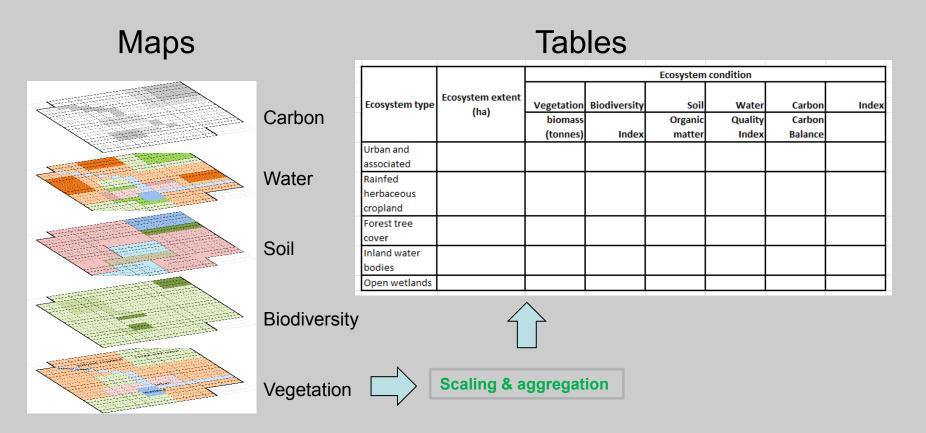
Account 2: Condition

Review of Level 0: Condition Account

Level 0: Account 2: Condition

What?

• **Ecosystem condition** reflects the overall quality of an ecosystem asset, in terms of its characteristics. (SEEA EEA paragraph 2.34)


Why?

- Policies to limit degradation of natural heritage, rehabilitation of degraded ecosystems
- Links to capacity to produce services (Services Supply)
- Indicators:
 - Indices of condition → change over time → where changes
 - Good/bad condition (exceeding "safe" levels) → where

Level 0: Account 2: Condition

What does a Condition Account look like?

Level 0: Account 2: Condition

What does a Condition Account look like?

- Spatially-detailed condition measures (quality or biophysical) for each characteristic:
 - Vegetation
 - Biodiversity (species abundance, diversity indices)
 - Soil
 - Water
 - Carbon
 - Air
 - Overall measures (e.g., heterogeneity)
- Selected to reflect an area's capacity to generate services
- Summarized in terms of an index
- Accounts for changes over time (accounting period)
- Attributes changes to drivers (natural and human)

Level 0: Account 2: Condition

What do you need to compile a Condition Account?

- Ecosystem Extent Account
- Common spatial database (Spatial units)
- Data:
 - Condition measures from satellite imagery and field studies over two periods of time
 - Environmental monitoring data (water, air, soil, species)

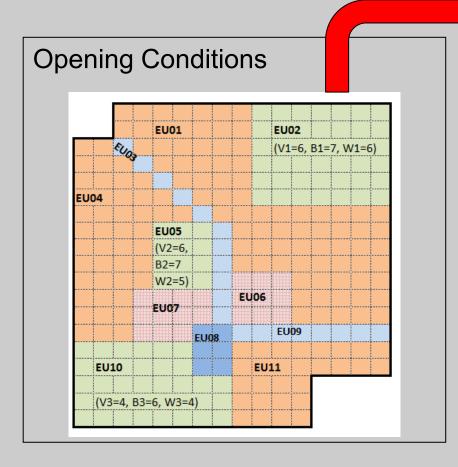
Expertise:

- Ecologists (vegetation, soil, water)
- Statisticians (methodologists to create indices, Scaling, Aggregation)
- Environmental policy analysts (focus on relevant indices)
- Geographers (GIS, remote sensing, integration)

- Concepts
 - Quality and other biophysical measures
 - Reference state
 - Creating indices

- Quality and other biophysical measures
 - Data are limited, so:
 - Select the most important and reliable condition measures
 - That link most directly to the services you are analysing
 - Examples:
 - Water quality measures → water purification
 - Air quality measures → air quality regulation
 - Biodiversity index → iconic species
 - Vegetation, soil types → carbon sequestration
 - Other biophysical measures are needed to interpret quality data
 - Stream flow rates → capacity to purify water & control floods
 - Slope → capacity for control erosion

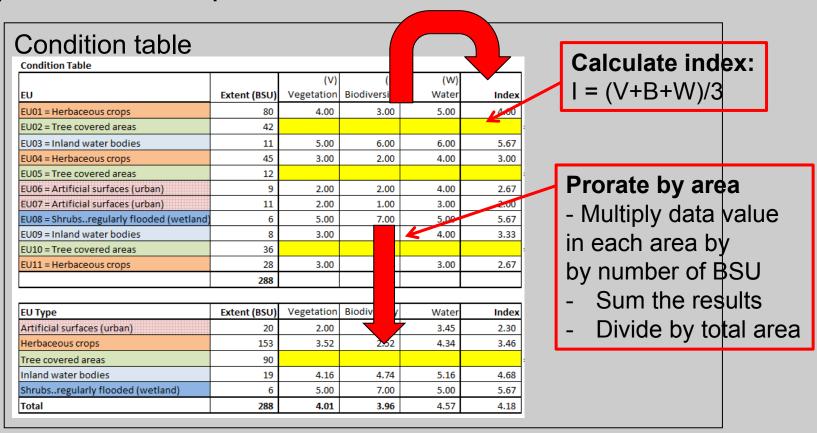
- Reference state
 - Aggregates could be "arbitrary"
 - For example, average of water quality measures
 - Or, indexed to a "reference state"
 - For example, compare with "quality standard" for use (drinking, recreation, livestock, wildlife, irrigation...)
 - Can compare with past or "ideal" reference condition:
 - Pristine or Pre-development state,
 - Sustainable state (theoretical)
 - Earliest available information
 - Choice of reference state can affect interpretation
 - e.g., Are we experiencing short-term fluctuations or a long-term trend?


- Creating indices
 - "Up" may be better or worse
 - e.g., if pollutants increase this is usually worse
 - e.g., if biodiversity increases, this is usually better
 - "Up" or "Down" from ideal may be worse
 - e.g., pH of drinking water should be neutral
 - e.g., species may have an "optimal" abundance
 - Is there a need for weighting?
 - One measure may be more **important** than another
 - Is there a need for scaling?
 - One measure may representative of a larger area

- Compilation Group Exercise (30m)
 - Situation:
 - Same EUs as defined in Spatial Units
 - Added environmental quality data (indices scaled 1-10)
 - "Reference state" is Opening Conditions
 - Objective (Groups of 3-5):
 - 1. Record quality data in appropriate cells in Condition Table
 - 2. Using formulas provided, calculate an unweighted index for each forested EU
 - For the Opening Conditions
 - Calculate a summary for each indicator for Tree Covered
 Area
 - 4. Calculate and allocate changes to improvements or reductions in condition
 - 5. Report your results

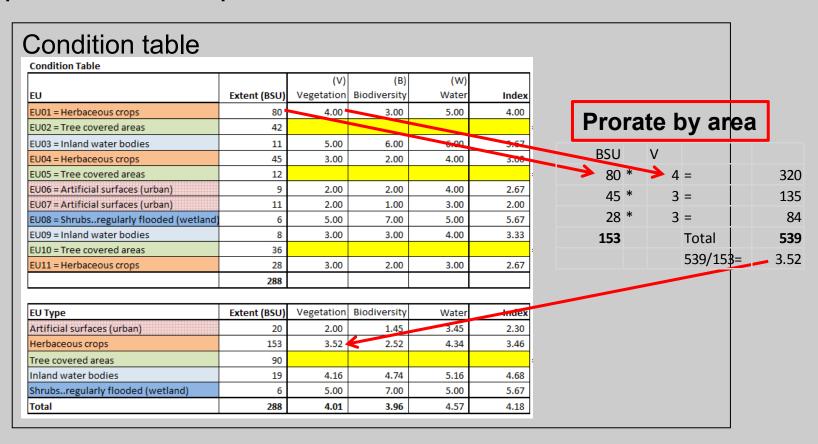
Level 1: Account 2: Condition

Group Exercise: Step 1 – Transfer data for Tree Covered EUs



Condition Table					
Extent (BSU)	(V) Vegetation	(B) Biodiversity	(W) Water	Index	
80	4.00	3.00	5.00	4.00	
42					
11	5.00	6.00	6.00	5.67	
45	3.00	2.00	4.00	3.00	
12					
9	2.00	2.00	4.00	2.67	
11	2.00	1.00	3.00	2.00	
6	5.00	7.00	5.00	5.67	
8	3.00	3.00	4.00	3.33	
36					
28	3.00	2.00	3.00	2.67	
288					
Futont (BCII)	Vogotation	Piodivorsity	Water	Index	
` '	_	· ·		2.30	
				3.46	
	3,32	2.32	4,34	3,40	
	4.16	4.74	5 16	4.68	
	5.00	7.00	5.00	5.67	
6			5.00	3.07	
	42 11 45 12 9 11 6 8 36 28	80 4.00 42 11 5.00 45 3.00 12 9 2.00 11 2.00 6 5.00 8 3.00 36 28 3.00 288 Extent (BSU) Vegetation 20 2.00 153 3.52	80 4.00 3.00 42 0 0 0.00 41 5.00 6.00 42 9 2.00 2.00 11 2.00 1.00 6 5.00 7.00 8 3.00 3.00 36 28 3.00 2.00 288 Extent (BSU) Vegetation Biodiversity 20 2.00 1.45 153 3.52 2.52	80 4.00 3.00 5.00 42	

Level 1: Account 2: Condition


Group Exercise: Step 2 – Calculate indices for each EU

Level 1: Account 2: Condition

Group Exercise: Step 2 – Prorate area for each EU

Level 1: Account 2: Condition

Group Exercise: Step 3 – Finalize Condition Account

Condition Table (Opening Conditions)

Condition Table (Closing Conditions - Provided)

Calculate and allocate changes to Condition Account

Condition Account						
	Extent (BSU)	Vegetation	Biodiversity	Water	Index	
Opening Conditions	288					
Improvements in condition				4		
Reductions in condition						
Closing Conditions	288	3.99	4.03	5.32	4.45	

Calculate and allocate changes

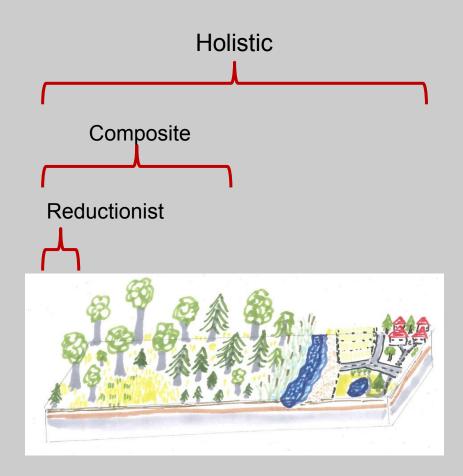
(Closing – Opening) + → improvement

- → reduction

- Is everyone clear on the objectives?
- 30 minutes group work
- Please ask questions
- Results:
 - Each group report:
 - Tree Cover Area Index result
 - Has condition been improved or reduced?
 - For which components?

		(V)	(B)	(W)	
EU	Extent (BSU)	Vegetation	Biodiversity	Water	Index
EU01 = Herbaceous crops	80	4.00	3.00	5.00	4.00
EU02 = Tree covered areas	42				
EU03 = Inland water bodies	11	5.00	6.00	6.00	5.67
EU04 = Herbaceous crops	45	3.00	2.00	4.00	3.00
EU05 = Tree covered areas	12				
EU06 = Artificial surfaces (urban)	9	2.00	2.00	4.00	2.67
EU07 = Artificial surfaces (urban)	11	2.00	1.00	3.00	2.00
EU08 = Shrubsregularly flooded (wetland)	6	5.00	7.00	5.00	5.67
EU09 = Inland water bodies	8	3.00	3.00	4.00	3.33
EU10 = Tree covered areas	36				
EU11 = Herbaceous crops	28	3.00	2.00	3.00	2.67
	288				
EU Type	Extent (BSU)	Vegetation	Biodiversity	Water	Inac
Artificial surfaces (urban)	20	2.00	1.45	7 45	2.30
Herbaceous crops	153	3.52	2.52	4.34	3.46
Tree covered areas	90			7	
Inland water bodies	19	4.10	4.74	5 16	4.68
Shrubsregularly flooded (wetland)		5.00	7.00	5.00	5.0
Total	288	4.01	3.96	4.57	4.18

	7			
Extent (BSU)	Vegetation	Biodiversity	Water	Index
298				
288	3.99	4.03	5.32	1.45
	298	296	298	296


- Learning objectives (Level 2)
 - Understand the data options and sources
 - Understand the important conceptual issues
 - Be aware of how other countries have approached measuring Condition

- Data Options
 - Types of condition data
 - Sources of national condition data
 - Estimating condition data
 - Selecting condition measures

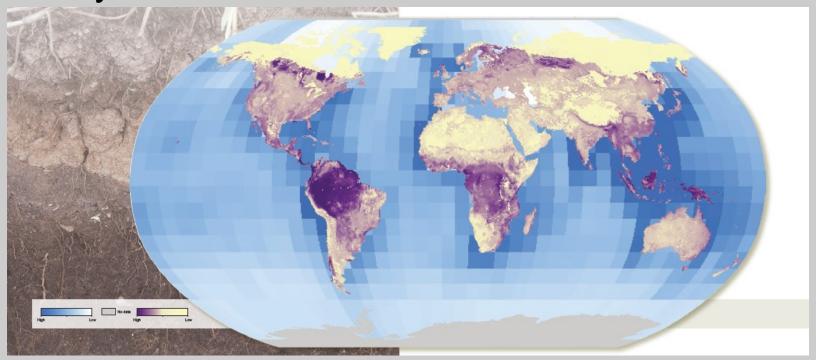
- Types of condition data
 - There are many possible quality measures
 - Water quality is often an index based on selection of indicators (BOD, COD, pH, metals...) according to fitness for use (drinking, recreation, livestock, wildlife, irrigation...)
 - Air quality (Ozone, PM_{2.5}, NO_x, SO_{2...}) is often measured only in urban areas and indexed on effects on human health
 - Soil quality (moisture, texture, contaminants) should be available from soil inventories
 - Ecosystem integrity (fragmentation, heterogeneity) can be estimated from satellite and administrative data (e.g., roads)

- Types of condition data
 - Quality data may refer to different levels of "holism"
 - Reductionist = indicator species, ratios between organisms
 - Composite indicators = biomass, primary productivity
 - Holistic = diversity,
 resilience, thermodynamic
 capacity

Level 2: Account 2: Condition

- Types of condition data
 - For ecosystem accounting, it is not necessary to have all measures
 - → link available data to **important** services

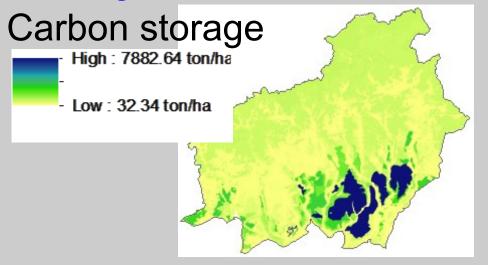
Examples:


- Water purification of wetlands: Type of wetland, flow rates, quality of inflow, quality of outflow (phosphorous? metals?)
- Erosion control: Vegetation density, slope, soil type
- · Biomass for crops: Soil type, soil carbon, slope

- Sources of national condition data
 - Departments of Environment: Water quality, air quality, Species diversity indices
 - Departments of Natural Resources: Hydrology
 - Departments of Agriculture: Soil type, soil quality, farming practices
 - **Departments of Forestry**: Forest status, species mix, forest inventory, carbon balances
 - Departments of Fisheries: Coastal and marine water quality, species diversity
 - International sources:
 - FAO: land cover, soil, marine species distributions
 - IUCN: protected areas, red list of threatened species

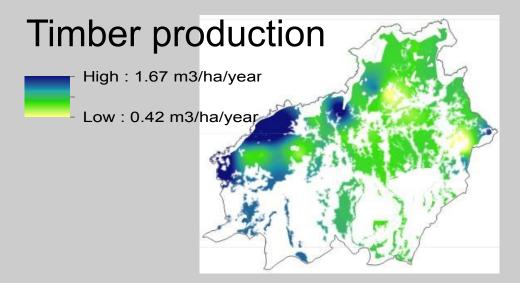
Level 2: Account 2: Condition

UNEP-WCMC Composite map of global ecosystem assets


Source: Dickson, Blaney et al. (2014)

- Recommendation:
- → Conduct an **inventory** of available data in government, academia and NGOs
- →Data inventories are inexpensive and have many benefits:
 - → Engage the data providers
 - →Improve metadata
 - →Improve use of existing data
 - → Suggest means of harmonizing existing data
 - →Identify data gaps

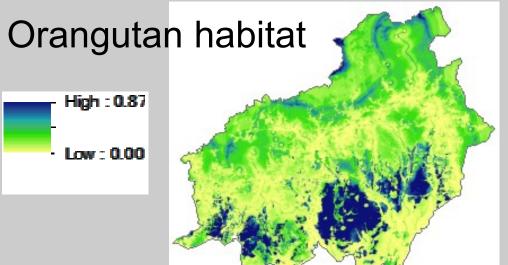
- Estimating condition data
 - Not all data need to be measured (or measured frequently)
 - Can estimate condition or services from other condition data using Biophysical Modelling
 - Examples:
 - Land cover class → carbon storage
 - Sampled data on forest growth → estimate for other areas
 - Forest cover, distance from roads, etc. → orangutan habitat
 - Primary production (from remote sensing) + soil respiration
 → carbon sequestration



Ecosystem services Central Kalimantan

Model used

Look Up Tables (every land cover class is attributed a specific carbon storage value)


Kriging

(values are interpolated from samples)

Source: Sumarga and Hein, 2014



Ecosystem services Central Kalimantan

Model used:

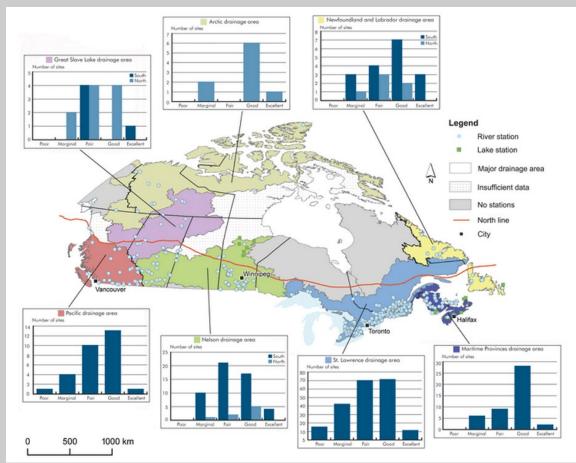
Statistical model(Maxent) (habitat suitability predicted on the basis of forest cover, distance from road, etc.)

Process-based Model (primary ecosystem production minus soil respiration)

Source: Sumarga and Hein, 2014

Level 2: Account 2: Condition

Conceptual issues


- Measurement
 - Are data representative?
 - Do monitoring sites represent all ecosystem types?
 - What is the quality of the data?
 - Are data consistent over time?
- Linkage to services
 - Condition and services have a complex relationship
 - A small change in condition may have a large effect on services (e.g., change in coastal water quality on coral)
 - A large change in condition may have a small effect on services (e.g., change in coastal water quality on tourism)

Level 2: Account 2: Condition

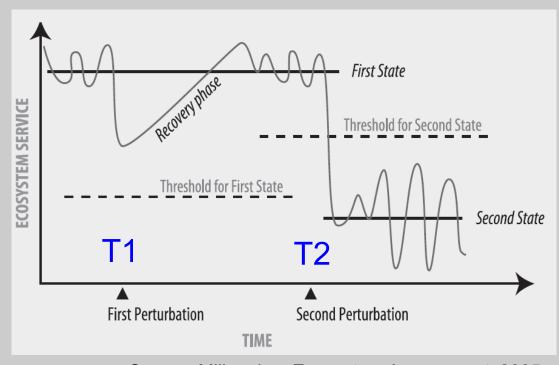
Are data representative?

Canada example:

- Monitoring sites selected to identify "problems"
- Some areas and types of streams undersampled
- Populated areas oversampled
- Solution?

Source: Statistics Canada, 2007

Level 2: Account 2: Condition


Linkage to services

- As some services increase (e.g., crops), quality (biodiversity, heterogeneity) may decrease
 - This is not good, since intensive and extensive cropping creates ecosystems that are less resilient to change.
- Some services (e.g., iconic species habitat) may be very sensitive to disturbance.
- Research on resilience is trying to understand how to better link conditions with services.

Level 2: Account 2: Condition

Linkage to services

- In this hypothetical example, an ecosystem changes over time.
- After T1, it recovered its level of services, since the change was below the first threshold.
- After T2, it could not recover, since the conditions changed to below the new threshold.
- The result was a permanent decrease in that service
- This is not easy to predict

Source: Millennium Ecosystem Assessment, 2005.

- Group exercise (15m) (Groups of 3-5)
- Choose one ecosystem type and a service it provides (e.g., forests → flood protection)
- Suggest three condition measures (quality and biophysical) that could inform the relationship between the condition and the service
- 3. Report:
 - The service and condition measures you selected
 - How are they related? (direction, importance)
 - Are national data available in your country for these condition measures?

- Concepts Group exercise (15m)
- Group reports
 - The service and condition measures you selected
 - How are they related? (direction, importance)
 - Are national data available in your country for these condition measures?
- Discussion
 - What other condition measures could you suggest?
 - What other data sources could you suggest?

- Discussion and questions
- Take home points:
 - Conduct an inventory of ecosystem condition data
 - Data may be limited, but can be useful
 - There are no simple formulas to calculate ecosystem condition indicators for all purposes
 - Biophysical modelling can be used to fill some gaps
 - Ecosystem condition and services supply are nonlinear
 - Testing will provide a better understanding of data opportunities and constraints
 - Focus on available data and priority services

Level 2: Account 2: Condition

References

- DIckson, B., Blaney, et al., 2014. <u>Towards a global map of natural capital: Key ecosystem assets. DEW/1824/NA</u>. Nairobi, Kenya: UNEP.
- Millennium Ecosystem Assessment, 2005.
 http://www.millenniumassessment.org/documents/document.300.aspx.pdf41
- Statistics Canada, 2007. <u>Canadian Environmental Sustainability Indicators 2007</u>. Cat. No. 16-251-x.
- Sumarga, E. And Hein, L., 2014. Mapping Ecosystem Services for Land Use
 Planning, the Case of Central Kalimantan. *Environmental management*, pp. 1-14.

Further Information

- SEEA Experimental Ecosystem Accounting (2012)
- SEEA-EEA <u>Technical Guidance</u> (forthcoming)
 - Detailed supporting document on "<u>Ecosystem Condition and</u> <u>Capacity</u>" by Michael Bordt

Evaluation of the training module

- Please complete the online evaluation form for this module: http://tinyurl.com/pbopmy2
- For this module
 - What did you learn that you could apply in your work?
 - Was the presentation clear and informative?
 - Was it too simple? Too complex?
 - Was there anything you did not understand?
 - What additions or deletions would you suggest (recognizing that the unit is intended for a general audience)?
 - Do you have any suggestions as to how the SEEA-EEA may be improved (concepts, principles) in this area?

Acknowledgements

This project is a collaboration of The United Nations Statistics Division, United Nations Environment Programme and the Secretariat of the Convention on Biological Diversity and is supported by the Government of Norway.

Contact: seea@un.org

