

Condition Account (Levels 0, 1 and 2)

Project: Advancing the SEEA Experimental Ecosystem Accounting

Overview: The Condition Account

1. Learning objectives

2. Review of Level 0 (5m)

- What is it?
- Why do we need it?
- What does it look like?
- Expertise & data required
- Links to related training materials

3. Level 1 (Compilers)

- Concepts (15m)
- Group exercise & Discussion (30m)
- 4. Level 2 (Data providers)
 - Data options, examples & issues (15m)
 - Group exercise & Discussion (15m)
- 5. Closing Discussion (10m)

© wiktor bubniak / Fotolia.com

SEEA-EEA Training Levels 1 and 2

- Learning objectives
 - Level 1:
 - Understand the basic concepts of The Condition Account
 - Learn the steps of compiling a Condition Account
 - Level 2
 - Understand the data options and sources
 - Understand the important conceptual issues
 - Be aware of how other countries have approached measuring Condition

Account 2: Condition

- What?
 - Ecosystem condition reflects the overall quality of an ecosystem asset, in terms of its characteristics. (SEEA EEA paragraph 2.34)
- Why?
 - Policies to limit degradation of natural heritage, rehabilitation of degraded ecosystems
 - Links to capacity to produce services (Services Generation)
 - Indicators:
 - Indices of condition \rightarrow change over time \rightarrow where changes
 - Good/bad condition (exceeding "safe" levels) → where

Level 0: Account 2: Condition

What does a Condition Account look like?

Maps

Tables

- What does a Condition Account look like?
 - Spatially-detailed condition measures (quality or biophysical) for each characteristic:
 - Vegetation
 - Biodiversity (species abundance, diversity indices)
 - Soil
 - Water
 - Carbon
 - Air
 - Overall measures (e.g., heterogeneity)
 - Selected to reflect an area's capacity to generate services
 - Summarized in terms of an **index**
 - Accounts for changes over time (accounting period)
 - Attributes changes to **drivers** (natural and human)

Level 0: Account 2: Condition

- What do you need to compile a Condition Account?
 - Ecosystem Extent Account
 - Common spatial database (spatial units)
 - Data:
 - Condition measures from satellite imagery and field studies over two periods of time
 - Environmental monitoring data (water, air, soil, species)

• Expertise:

- Ecologists (vegetation, soil, water)
- Statisticians (methodologists to create indices, scaling, aggregation),
- Environmental policy analysts (focus on relevant indices)
- Geographers (GIS, remote sensing, integration)

- Concepts
 - Quality and other biophysical measures
 - Reference state
 - Creating indices

- Quality and other biophysical measures
 - Data are limited:
 - Select most and important and reliable condition measures
 - That link most directly to the services you are analysing
 - Examples:
 - Water quality measures \rightarrow water quality index
 - Air quality measures \rightarrow air quality index
 - Species ranges \rightarrow biodiversity index
 - Vegetation, soil types \rightarrow carbon balance
 - "Other biophysical measures" needed to interpret quality data
 - Stream flow rates \rightarrow capacity to purify water & control floods
 - Slope \rightarrow capacity for control erosion

- Reference state
 - Aggregates could be "arbitrary"
 - For example, average of water quality measures
 - Or, indexed to a "reference state"
 - For example, compare with "quality standard" for use (drinking, recreation, livestock, wildlife, irrigation...)
 - Can compare with past or "ideal" reference condition:
 - Pristine or Pre-development state,
 - Sustainable state (theoretical)
 - Earliest available information
 - Choice of reference state can affect interpretation
 - e.g., Are we experiencing short-term fluctuations or a long-term trend?

- Creating indices
 - "Up" may be better or worse
 - e.g., if pollutants increase this is usually worse
 - e.g., if biodiversity increases, this is usually better
 - "Up" or "Down" from ideal may be worse
 - e.g., pH of drinking water should be neutral
 - e.g., species may have an "optimal" abundance
 - Is there a need for weighting?
 - One measure may be more important than another
 - Is there a need for scaling?
 - One measure may representative of a larger area

- Compilation Group Exercise (30m)
 - Situation:
 - LCEUs defined in Spatial Units
 - Added environmental quality data (indices scaled 1-10)
 - "Reference state" is Opening Conditions
 - Objective (Groups of 3-5):
 - 1. Record quality data in appropriate cells in Condition Table
 - 2. Using formulas provided, calculate an unweighted index for each forested LCEU
 - For the **Opening Conditions**
 - 3. Calculate a summary for each indicator for Forest Tree Cover
 - 4. Calculate and allocate changes to improvements or reductions in condition
 - 5. Report your results

Level 1: Account 2: Condition

Group Exercise: Step 1 – Transfer data for Forest LCEUs

Level 1: Account 2: Condition

Group Exercise: Step 2 – Calculate indices for each LCEU

				/		
Condition table						
		()/)	(B)	(10/)		Calculate index:
LCEU	Extent (BSU)	Vegetation	Biodiversity	Water	Index	I = (V + B + W)/3
LCEU01 = Rainfed herbaceous cropland	80	4.00	3.00	5.00	4.00	. (
LCEU02 = Forest tree cover	42				Y	
LCEU03 = Inland water bodies	11	5.00	6.00	6.00	5.67	
LCEU04 = Rainfed herbaceous cropland	45	3.00	2.00	4.00	3.00	
LCEU05 = Forest tree cover	12					
LCEU06 = Urban and associated developed	9	2.00	2.00	4.00	2.67	Prorate by area
LCEU07 = Urban and associated developed	11	2.00	1.00	3.00	2.00	
LCEU08 = Open wetlands	6	5.00	7.00	5.00	5.67	- Multiply data value
LCEU09 = Inland water bodies	8	3.00	3.00	4.00	3.33	
LCEU10 = Forest tree cover	36					In each area by
LCEU11 = Rainfed herbaceous cropland	28	3.00	2.00	3.00	2.67	
	288					DC BOUNDER OF BOU
						Sum the regulte
LCEU Type	Extent (BSU)	Vegetation	Biodiversity	Water	Index	- Sum me results
Urban and associated	20	2.00	1.45	3.45	2.30	- Divide by total area
Rainfed herbaceous cropland	153	3.52	2,52	4.34	3.46	
Forest tree cover	90					
Inland water bodies	19	4.16	4.74	5.16	4.68	
Open wetlands	6	5.00	7.00	5.00	5.67	
Total	288	4.01	3.96	4.57	4.18	

Level 1: Account 2: Condition

Group Exercise: Step 2 – Prorate area for each LCEU

Level 1: Account 2: Condition

Group Exercise: Step 3 – Finalize Condition Account

- Is everyone clear on the objectives?
- 30 minutes group work
- Please ask questions
- Results:
 - Each group report:
 - Forest Tree Cover Index result
 - Has condition been improved or reduced?
 - For which components?

Condition Account					
	Extent (BSU)	Vegetation	Biodiversity	Water	Index
Opening Conditions	288				
Improvements in condition					
Reductions in condition					
Closing Conditions	288	3.99	4.03	5.32	4.45

		(*)	(0)	(***)	4 1	
LCEU	Extent (BSU)	Vegetation	Biodiversity	Water	Index	
LCEU01 = Rainfed herbaceous cropland	80	4.00	3.00	5.00	4.00	
LCEU02 = Forest tree cover	42					
LCEU03 = Inland water bodies	11	5.00	6.00	6.00	5.67	
LCEU04 = Rainfed herbaceous cropland	45	3.00	2.00	4.00	3.00	
LCEU05 = Forest tree cover	12					
LCEU06 = Urban and associated developed	9	2.00	2.00	4.00	2.67	
LCEU07 = Urban and associated developed	11	2.00	1.00	3.00	2.00	
LCEU08 = Open wetlands	6	5.00	7.00	5.00	5.67	
LCEU09 = Inland water bodies	8	3.00	3.00	4.00	3.33	
LCEU10 = Forest tree cover	36					
LCEU11 = Rainfed herbaceous cropland	28	3.00	2.00	3.00	2.67	
	288					
LCEU Type	Extent (BSU)	Vegetation	Biodiversity	Water	Index	
Urban and associated	20	2.00	1.45	3.45	2.30	
Rainfed herbaceous cropland	153	3.52	2.52	4.34	3.46	
Forest tree cover	90					
Inland water bodies	19	4.16	4.74	5.16	4.68	
Open wetlands	6	5.00	7.00	5.00	5.67	
Total	288	4.01	3.96	4.57	4.18	

- Learning objectives (Level 2)
 - Understand the data options and sources
 - Understand the important conceptual issues
 - Be aware of how other countries have approached measuring Condition

Level 2: Account 2: Condition

Data Options

- Types of condition data
- Sources of national condition data
- Estimating condition data
- Selecting condition measures

Level 2: Account 2: Condition

Types of condition data

- Quality data may refer to different levels of "holism"
 - Reductionist = indicator species, ratios between organisms
 - Composite indicators = biomass, primary productivity
 - Holistic = diversity, resilience, thermodynamic capacity
- There are many possible quality measures
 - Water quality is often an index based on selection of indicators (BOD, COD, pH, metals...) according to fitness for use (drinking, recreation, livestock, wildlife, irrigation...)
 - Air quality (Ozone, PM_{2.5}, NO_x, SO_{2...}) is often measured only in urban areas and indexed on effects on human health
 - Soil quality (moisture, texture, contaminants) should be available from soil inventories
 - Ecosystem integrity (fragmentation, heterogeneity) can be estimated from satellite and administrative data (e.g., roads)₂₂

- Types of condition data
 - For ecosystem accounting, it is not necessary to have all measures
 - \rightarrow link available data to **important** services
- Examples:
 - Water purification of wetlands: Type of wetland, flow rates, quality of inflow, quality of outflow (phosphorous? metals?)
 - Erosion control: Density of vegetation, slope, soil type
 - Crops: Soil type, soil carbon, slope

- Sources of national condition data
 - **Departments of Environment**: Water quality, air quality, Species diversity indices
 - **Departments of Natural Resources**: Hydrology
 - Departments of Agriculture: Soil type, soil quality, farming practices
 - **Departments of Forestry**: Forest status, species mix, forest inventory, carbon balances
 - **Departments of Fisheries**: Coastal and marine water quality, species diversity
 - International sources:
 - FAO: land cover, soil, marine species distributions
 - IUCN: protected areas, red list of threatened species

Level 2: Account 2: Condition

 UNEP-WCMC Composite map of global ecosystem assets

Source: Dickson, Blaney et al. (2014)

Level 2: Account 2: Condition

- Recommendation:
- →Conduct an inventory of available data in government, academia and NGOs

→Data inventories are inexpensive and have many benefits

- \rightarrow Engage the data providers
- →Improving metadata
- \rightarrow Improving use of existing data
- \rightarrow Suggesting means of harmonizing existing data
- →Identifying data gaps

- Estimating condition data
 - Not all data need to be measured (or measured frequently)
 - Can estimate condition or services from other condition data using Biophysical Modelling
 - Examples:
 - Land cover class \rightarrow carbon storage
 - Sampled data on forest production → estimate for other areas
 - Forest cover, distance from roads, etc. \rightarrow orangutan habitat
 - Primary production (from remote sensing), soil respiration → carbon sequestration

Ecosystem services Central Kalimantan

Model used

Look Up Tables (every

land cover class is attributed a specific carbon storage value)

Kriging (values are interpolated from samples)

Source: Sumarga and Hein, 2014

Ecosystem services Central Kalimantan

Orangutan habitat

Model used:

Statistical model (Maxent) (habitat suitability predicted on the basis of forest cover, distance from road, etc.)

Process-based Model

(primary ecosystem production minus soil respiration)

Source: Sumarga and Hein, 2014

- Conceptual issues
 - Measurement
 - Are data representative?
 - Do monitoring sites represent all ecosystem types?
 - What it the quality of the data?
 - Are data consistent over time?
 - Linkage to services
 - Condition and services have a complex relationship
 - A small change in condition may have a large effect on services (e.g., change in coastal water quality on coral)
 - A large change in condition may have a small effect on services (e.g., change in coastal water quality on tourism)

Level 2: Account 2: Condition

Are data representative?

Canada example:

- Monitoring sites selected to identify "problems"
- Some areas and types of streams undersampled
- Populated areas oversampled
- Solution?

Level 2: Account 2: Condition

Linkage to services

- As some services increase (e.g., crops) quality (biodiversity, heterogeneity) may decrease
 - This is not good, since intensive and extensive cropping creates ecosystems that are less resilient to change.
- Some services (e.g., iconic species habitat) may be very sensitive to disturbance.
- Research on resilience is trying to understand how to better link conditions with services.

Level 2: Account 2: Condition

Linkage to services

- In this hypothetical example, an ecosystem encountering changes in condition.
- It recovered its level of services, since the change was below the first threshold.
- After the second perturbation, it could not recover, since the conditions changed to below the new threshold.
- The result was a permanent decrease in that service

Source: Millennium Ecosystem Assessment, 2005.

- Group exercise (15m) (Groups of 3-5)
- Choose one ecosystem type and a service it provides (e.g., forests → flood protection)
- 2. Suggest **three** condition measures (quality and biophysical) that could inform the relationship between the **condition** and the **service**
- 3. Report:
 - The service and condition measures you selected
 - How are they related? (direction, importance)
 - Are national data available in your country for these condition measures?

- Concepts Group exercise (15m)
- Group reports
 - The service and condition measures you selected
 - How are they related? (direction, importance)
 - Are **national** data available in your country for these condition measures?
- Discussion
 - What other condition measures could you suggest?
 - What other data sources could you suggest?

- Discussion and questions
- Take home points
 - Data on ecosystem condition may be limited, but much can still be used in ecosystem accounting
 - There are no simple formulas to calculate ecosystem condition indicators for all purposes
 - Testing will provide a better understanding of data opportunities and constraints
 - Focus on available data and priority services

Level 2: Account 2: Condition

References

- DIckson, B., Blaney, et al., 2014. Towards a global map of natural capital: Key ecosystem assets. DEW/1824/NA. Nairobi, Kenya: UNEP.
- Millennium Ecosystem Assessment, 2005. <u>http://www.millenniumassessment.org/documents/document.300.aspx.pdf37</u>
- Statistics Canada, 2007. Canadian Environmental Sustainability Indicators 2007. Cat. No. 16-251-x.
- Sumarga, E. And Hein, L., 2014. Mapping Ecosystem Services for Land Use Planning, the Case of Central Kalimantan. Environmental management, pp. 1-14.
- Further Information
 - SEEA Experimental Ecosystem Accounting (2012)
 - SEEA-EEA Technical Guidance (forthcoming)
 - Detailed supporting document on "Ecosystem Condition and Capacity" by Michael Bordt

Evaluation of the training module

- Please complete the evaluation form for this module
- For this module
 - What did you learn that you could apply in your work?
 - Was the presentation clear and informative?
 - Was it too simple? Too complex?
 - Was there anything you did not understand?
 - What additions or deletions would you suggest (recognizing that the unit is intended for a general audience)?
 - Do you have any suggestions as to how the SEEA-EEA may be improved (concepts, principles) in this area?

Acknowledgements

 This project is a collaboration of The United Nations Statistics Division, United Nations Environment Programme and the Secretariat of the Convention on Biological Diversity and is supported by the Government of Norway.

