

System of Environmental Economic Accounting

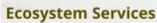
NCAVES - Global initiative and national pilots

Kavita Sharma UN Environment

Nanning, May 2018

- 1. Introduction
- 2. Example from TEEB (The Economics of Ecosystems and Biodiversity)

Objectives and deliverables

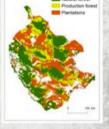

- 1. Piloting ecosystem accounts (in each of the 5 partner countries) for selected areas (national and/or regional)
 - > National Plan
 - > Compilation of accounts physical and monetary
 - Policy application
 - > Indicators
- 2. Developing standards and practical guidelines 2020, contribute to research agenda (spatial, condition, services, valuation)
- 3. Develop and indicator set (national and global) SDG, Aichi targets, IPBES etc.
- 4. Alignment with Business accounting (sustainability reporting) GRI, IIRC
- 5. Communication and outreach national and global platforms
- 6. Training and capacity development modules, regional and national workshops, and in country support

Cross cutting - stakeholder engagement

Introduction – Scenario analysis

- Looking at future trajectories
- In the context of SEEA EEA
 - > Proof of concept
 - > Extent, condition can provide a rich information base to support
 - Support Spatial planning, Land use trade-offs (ecocompensation; sponge cities)
 - Choosing between alternative management/ investment options **CASE BACKGROUND**
- Must be plausible and relevant
 - > Link to policy
 - > Broad Stakeholder base of decision-makers
- Clear assumptions

SUMATRA


- Water yield
- Sediment retention
- Nutrient retention
- Habitat quality for tigers

Baseline

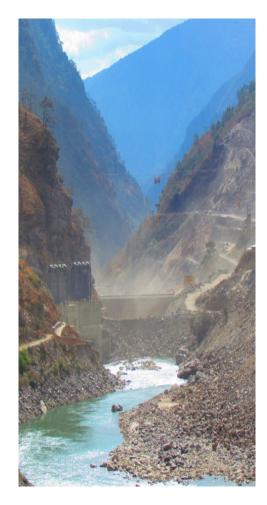
Scenarios

Ecosystem vision

Government plan

TEEB Country Studies (coordinated by UN Environment) 2013 - 2017

- Bhutan, Philippines, Tanzania, Liberia, and Ecuador
- To inform national policies
- Scenarios/ trade offs decided through workshops (iterative)


- Watershed level analyses
- Provisioning, Regulating and Cultural services

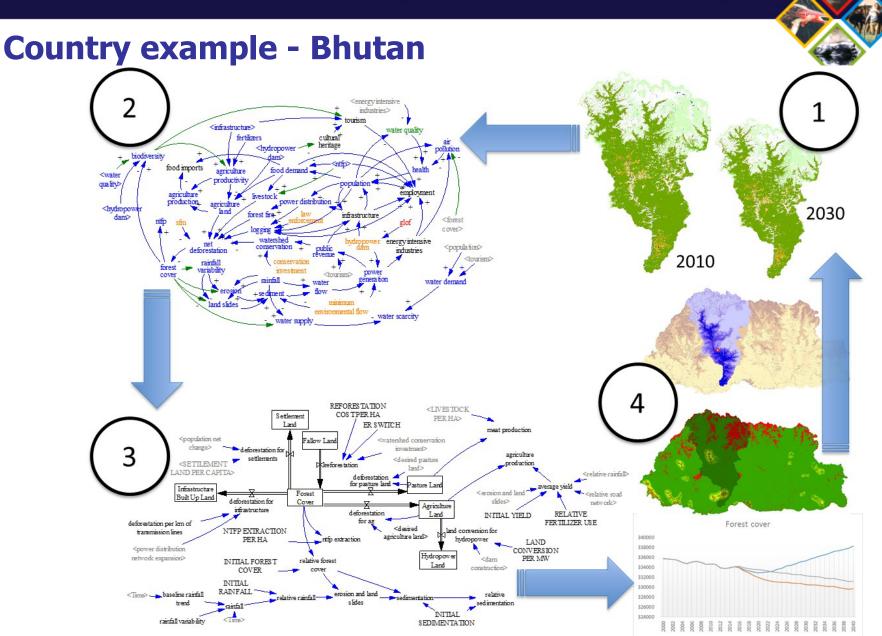
What is the issue (and its policy context)?

Bhutan - Inform hydropower development, ESIA, remediation plans etc.

- Benefit-sharing mechanism for communities/ PES
- Investment options for 'better' outcomes
 - How does hydropower depend on upstream land management?
- Scenarios
 - Business as Usual (BAU)
 - Hydropower construction
 - Hydropower construction with conservation/ investment in the watershed

The Economics of Ecosystems & Biodiversity

Country example - Bhutan


• Biophysical modeling (InVEST)

• Systems model (GEM)

Habitat Quality	Carbon	Annual Water Yield (Hydropo wer)	Nutrient Retentio n (Water Purificati on)	Sedimen t Retentio n (Erosion Control)	InVEST (v3.3.0) Data Inventory			
м	lodels				Data requirements Type			
X	X	X	X	X	Land use/land cover (LULC)	map		
			х	X	DEM (topography)	map		
х					Threat impact distance	table		
х					Threat impact weights	table		
X					Form of decay function tab			
X					Threat maps ma			
X					Habitat sensitivity to threats	table		
X					Half saturation constant	table		
	X				Carbon in aboveground biomass	table		
	X				Carbon in belowground biomass	table		
	X				Carbon in dead organic matter	table		
	X				Carbon in soil	table		
		X	X	X	Annual average precipitation	map		
		x	x		Annual average reference evapotranspiration	map		
		X	х		Plant available water content	map		
		X	X		Etk/Crop Coefficient (by LULC)	table		
		X	X		Root depth (by LULC)	table		
		X	X		Effective soil depth	map		

	Agriculture Production (total)		Ranking based on crop national production, not at the Dzongkhag level	
Agriculture	Paddy	Million ton/year	Sum of crop production across relevant <u>Dzongkhag</u> affected by plant	Cultivated Area, Production and Yield of Major Crops by <u>Dzongkhag</u> , Bhutan
	Maize	Million ton/year	Sum of crop production across relevant <u>Dzongkhag</u> affected by plant	Cultivated Area, Production and Yield of Major Crops by <u>Dzongkhag</u> , Bhutan
	Wheat	Million ton/year	Sum of crop production across relevant <u>Dzongkhag</u> affected by plant	Cultivated Area, Production and Yield of Major Crops by <u>Dzongkhag</u> , Bhutan
	share of paddy		Estimated	
	share of maize		Estimated	
	share of wheat		Estimated	
	Agricultural Yield	ton/ha	Agricultural yield of the three main crops of agricultural production	
	Paddy	ton/ha	Sum of crop yield across relevant <u>Dzongkhag</u> affected by plant	Cultivated Area, Production and Yield of Major Crops by <u>Dzongkhag</u> , Bhutan
	Maize	ton/ha	Sum of crop yield across relevant <u>Dzongkhag</u> affected by plant	Cultivated Area, Production and Yield of Major Crops by <u>Dzongkhag</u> , Bhutan
			Sum of crop vield across relevant Dzongkhag affected by	Cultivated Area. Production and Yield of

The Economics of Ecosystems & Biodiversity

- Hydropower + Conservation - Hydropower

Scenario results

ES	Estimation			Biophysical	Hydro <u>vs</u>	ES ys BAU	Economic value	Economic valuation (year 2030)		Comments
	InVEST	SD	Benefit transfer	change (2010- 2030): BAU	BAU	ES XX DAU	per unit	Hydro <u>vs</u> BAU	ES <u>vs</u> BAU	comments
Provision of food		×		9,581 ton	-752	-768	542.81 US\$/ton	-\$407,898	-\$416,954	Systemic approach, with endogenous changes to population and land use
					3,215	3,142		\$2,259,158	\$2,207,937	Sectoral approach with no change to land use, only yield
Sedimentation	x			0.21 mm3/km2	188.5%	-2.9%	12,484 \$/hour of hydropower dam operation	-\$18,211,679	\$281,590	Only considers impact on sedimentation from land use
Provision of freshwater (quality) - nitrogen		x		0.0008 mg/l	-3.27%	-3.16%	-	Below health threshold	Below health threshold	Assumes that all the land-related N loadings take place in 20% of the area (concerning the estimation of concentration)
Provision of freshwater (quality) - phosphorus		x		0.0008 mg/l	-2.97%	-2.86%	-	Below health threshold	Below health threshold	Assumes that all the land-related N loadings take place in 20% of the area (concerning the estimation of concentration)
			x	2,348 ha	-1,537	1,413	5,192 US\$/Ha	-\$7,981,483	\$7,334,511	Economic value per unit obtained from Kubiszewski et al. (2010)
Habitat for species		x		2,780 persons	-156	-153	17,732 US\$/person	-\$2,760,841	-\$2,719,680	Assumes that a reduction in habitat quality has a proportional impact on tourism visits (it could also be assumed that expenditure per visit might change)
Regulation of carbon	x	x		-81,954 ton	-71,216	65,435	43 US\$/ton	-\$3,062,288	\$2,813,705	Upper values of carbon coefficients from IPCC Report 2006
sequestration and storage	x	x		-4,933 ton	-15,767	14,489	43 US\$/ton	-\$677,981	\$623,027	Lower values of carbon coefficients from IPCC Report 2006

National Water Seminar 2017

- Prime Minister, Minister Economic Affairs, Secretary National Environmental Commission
- Policy Instrument under discussion

What are some of the challenges?

- Standardization of methods (for modeling, valuation etc.)
- "Found it relatively straightforward to synthesize data and information in biophysical and economic interim reports, but carrying out scenario analysis was considered much more challenging."
- Translation of policies into spatial information
- Spend more time to develop the research question and scenarios
- (Balancing process and content) Focus a lot more on process

THANK YOU

seea@un.org

Kavita.sharma@un.org