System of Environmental Economic Accounting
Energy Balances to Accounts
17-20 December 2019, Almaty, Kazakhstan

Jessica Ying Chan
United Nations Statistics Division
Outline

• Energy statistics, balances, accounts
 > Links, similarities and differences
 > Terminology
 > Complementing energy balances and value added of the accounts

• Going from energy balances to energy accounts
ENERGY STATISTICS, BALANCES AND ACCOUNTS
Energy statistics, balances and accounts

Energy statistics

Energy balances

Energy Supply and Use Tables

Other data sources
- National accounts
- External trade statistics
- Commodity statistics
- Traffic & transport data
- Household surveys
Links between energy statistics and accounts

- *International Recommendations for Energy Statistics*
- Standard International Energy Product Classification (SIEC)
- List of renewable products
- Note: Monetary accounts use CPC, not SIEC
 - No 1:1 correspondence
 - Crosswalk between SIEC and CPC in IRES is especially helpful for ensuring concordance between physical and monetary accounts
Quiz #1

When are corncobs considered energy products in SEEA-Energy?

a) When they are combusted directly to produce heat
b) When they are used in the production of ethanol as a biofuel
c) Both a) and b)
d) None of the above
Quiz #1

Answer:

a) When they are combusted directly to produce heat

> IRES and SEEA-Energy utilize the same definitions of energy products.

> Corncobs are considered energy products for the purpose of energy statistics and SEEA-Energy accounts only when they are combusted directly to produce heat.

> If used for ethanol, corncobs are recorded first as natural inputs under “Other energy inputs: energy inputs to cultivated biomass”
Links between energy balances and accounts

• Balances use a similar organizing principle as the physical flow accounts to structure information

• Basic energy statistics and energy balances are the starting point for energy accounts

• Many of the flows described in basic energy statistics and the energy balances are the same as in the energy accounts

• But… critical differences exist!
 > Main differences relate to activities in scope and how those activities are classified
Differences between energy balances and accounts

<table>
<thead>
<tr>
<th>Energy balances</th>
<th>Energy accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Physical and monetary</td>
</tr>
<tr>
<td>Various formats (IEA, Eurostat, UN)</td>
<td>Uses national accounts supply and use table format</td>
</tr>
<tr>
<td>Re-arrangement of industries’ energy use according to purpose (transport, auto-producers, heat for sale)</td>
<td>No re-arrangement of industries’ energy use</td>
</tr>
<tr>
<td>Focus on energy sector, including description of technologies</td>
<td>Energy “sector” described by ISIC, no special focus on technologies</td>
</tr>
<tr>
<td>All transport in one separate sector</td>
<td>Own account transport included in industries’ activities</td>
</tr>
<tr>
<td>Territory principle</td>
<td>Residence principle</td>
</tr>
<tr>
<td>Statistical differences</td>
<td>No statistical differences</td>
</tr>
</tbody>
</table>
How does the scope of supply in the balances differ from the scope of supply in the accounts?

a) The scope of supply in the balances is wider than that of the accounts

b) The scope of supply in the balances is narrower than that of the accounts

c) The scope of supply is the same in the balances and the accounts
Quiz #2

Answer:

a) The scope of supply in the balances is narrower than that of the accounts

> The balances and accounts define supply slightly differently due to the use of the territory and residence principle, respectively.

> SEEA-Energy definition of supply includes all energy made available for use, including fuel made available through international bunkering

> This means that the scope of supply in the balances is narrower than that of the accounts.
Differences in terminology

• Supply
 > In the energy balance, supply is defined as
 + Primary energy production
 + Imports of primary and secondary energy
 - Exports of primary and secondary energy
 - International (aviation and marine) bunkers - Stock changes
 > In the energy accounts the supply is defined as production (output) + imports
 - Includes fuel made available through international bunkers

<table>
<thead>
<tr>
<th>Bridge table for domestic supply and total supply (terajoules)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply (energy balances)</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Coal</td>
</tr>
<tr>
<td>Peat and peat products</td>
</tr>
<tr>
<td>Oil shale/oil sands</td>
</tr>
<tr>
<td>Natural gas (extracted)</td>
</tr>
<tr>
<td>Natural gas (distributed)</td>
</tr>
<tr>
<td>Oil (e.g., conventional crude oil)</td>
</tr>
<tr>
<td>Oil (oil products)</td>
</tr>
<tr>
<td>Biofuels</td>
</tr>
<tr>
<td>Waste</td>
</tr>
<tr>
<td>Electricity</td>
</tr>
<tr>
<td>Heat</td>
</tr>
<tr>
<td>Nuclear fuels and other fuels not elsewhere classified</td>
</tr>
</tbody>
</table>

Note: Exports are removed before the calculation of net supply or availability in the energy balances and therefore need to be added back in.
Differences in terminology

• Use

> In the energy accounts use includes intermediate consumption, households final consumption, exports, international bunkers and inventory (stock) changes are considered the uses

 - International bunker recorded as intermediate consumption if bunkering undertaken by a ship operated by resident unit
 - Recorded as export if operated by a non-resident unit

> Final consumption in balances (or end use in the accounts) vs.

Final consumption in accounts

Bridge table for final consumption and end use of energy (terajoules)

<table>
<thead>
<tr>
<th></th>
<th>Final consumption (energy balances)</th>
<th>+International marine bunkers</th>
<th>Exports</th>
<th>Accumulation</th>
<th>Energy sectors use of energy for supporting activities</th>
<th>Purchased by residents abroad</th>
<th>End use (SEEA-Energy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>21.1</td>
<td>1.9</td>
<td>-21.0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Peat and peat products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil shale/oil sands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas (extracted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas (distributed)</td>
<td>77.1</td>
<td>201.0</td>
<td>2.0</td>
<td>2.0</td>
<td>282.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil (e.g., conventional crude oil)</td>
<td>930</td>
<td>361.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1291</td>
</tr>
<tr>
<td>Oil (oil products)</td>
<td>44</td>
<td>44</td>
<td>80.0</td>
<td>-3.0</td>
<td>6.0</td>
<td>160</td>
<td>331</td>
</tr>
<tr>
<td>Biofuels</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Waste</td>
<td>78.1</td>
<td>1.0</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>79.4</td>
</tr>
<tr>
<td>Electricity</td>
<td>131</td>
<td>100.0</td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>Heat</td>
<td>76.5</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td>78.5</td>
</tr>
<tr>
<td>Nuclear fuels and other fuels not elsewhere classified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complementary approaches

• Energy statistics and balances:
 > Physical/technical view of energy use in an economy
 > Focus on transformation sector

• Energy accounts
 > Physical and monetary terms
 > Economic perspective
Energy accounts may improve national accounts

• Intermediate consumption of energy products (by ISIC) often not easy to compile for national accounts
 > E.g. Structural business statistics may only have one item on total cost of energy

• Energy accounts able to provide this information in physical units
 > Based on understanding of physical energy requirements of economic activities and price information, you can obtain a better picture of intermediate consumption
 > Ensures that depiction in national accounts is consistent
GOING FROM ENERGY BALANCES TO ENERGY ACCOUNTS
Approaches

• Existing data need to be manipulated and re-arranged according to accounting principles of the System of National Accounts

• Two general approaches used:
 > “Statistics/energy statistics first”
 > “Energy balances first”

• If energy balances exist - best starting point, since a lot of potential ‘issues’ in the data has already been resolved. However, the energy balances still need to be complemented/adjusted

• Importance of high quality basic energy statistics!
Energy balance first-approach

- Balances have a greater focus on products
- Accounts have greater focus on industries
- Level of adjustment often depends on level of disaggregation desired in accounts
Three broad steps to get to the accounts

- Many flows in the balances can be shown directly in the energy accounts

- Compile supply of primary energy products and corresponding natural inputs
 - Supply of primary energy products from statistics/balances
 - Using assumptions, approximate natural energy inputs (and losses during extraction)

- Transformation from primary into secondary energy products
 - Record transformation losses as residuals

- Compile end use of energy products
 - Record related residuals, usually the identical energy amounts that have been end used
Adjustments

- Some main adjustments include:
 - **Transport**
 - Balances: All use of energy allocated to ‘transport sector’
 - Accounts: Transport carried out by transport service industries and by all other industries and households (own account transport)
 - Special case of road transport!
 - Can make assumptions about marine and air transport
 - But for road transport, use of fuels theoretically concerns all economic activities

Transport sector

- ISIC Q
- ISIC F
- ISIC A
Adjustments

- Some main adjustments include:
 - Residence principle versus territory principles
 - Data to be adjusted—mainly concerns transport
 - Fuel purchased by non-resident units to be deducted
 - Resident units’ transport fuel purchased abroad to be added
 - Location independent!

 Supply table
 - Fuel purchased abroad by resident unit, including **international marine bunkers**!
 - Added to imports

 Use table
 - Fuel purchased on territory by non-resident unit
 - Added to exports

 Fuel-tourists
 - In theory, this also includes fuel purchased by tourists outside of their territory
Adjustments

• Other adjustments needed for:
 > Autoproducers of energy
 > Statistical differences
 > Flaring and venting
 > among others!
THANK YOU
seea@un.org

Special thanks to Flintull Annica Eriksson from ECA