Using machine learning for SEEA EEA

Prof. Dr Lars Hein, Wageningen University

Contents

- What is machine learning?
- Examples
 - Carbon mapping
 - Hydrology mapping
 - Mapping precipitation patterns
 - Cultural services
 - Deforestation mapping

What is machine learning?

Machine learning is a type of artificial intelligence, whereby algorithms are developed using sets of training data without specifying the types of relation / equations that can be expected. Different types of algorithm structures can be used, such as Random Forest, or Convolutional Neural Networks.

2015: AlphaGo versus Lee Sedol (33), world champion Go (4-1)

Uses ML to identify optimal responses based on data from a very large number of actual moves plaid in Go.

Machine learning continued

2018: AlphaGo versus AlphaZero

- ApphaZero was trained with selfplay
- After one week of training defeated AlphaGo 100-0.

Using machine learning for mapping carbon

Biomass maps predicted by random forest, support vector machine, and neural networks

Mapping hydrology in the Philippines

Regression of all test data

WAGENINGEN UNIVERSITY WAGENINGEN UR

Mapping impacts of forests on precipitation

Average annual precipitation change map in mm (with Forest - without Forest)

Question: how do forests contribute to maintaining rainfall patterns?

Can we use ML to inform us on the ecosystem service 'maintaining rainfall patterns' ?

Big data and machine learning for mapping cultural services

- PhD Ilan Havinga, with Patrick Bogaart (CBS)
- Modeling cultural services
- Looking at big data (Flickr, Strava)

Compiling extent accounts with satellite data

Case study showing expansion of oil palm plantations in Johor, Malaysia 2016-2018

a pe	Detail of map	Land cover (ha)		Production	(ton)
	Plantation Forest	Forest	109,000	Timber	981,000
				Carbon sequestration	654,000
	WAGENINGEN UNIVERSITY ENVIRONMENTAL SCIENCES Sarvisions Applications in remote sensing	Plantation	91,000	Oilpalm fruit	1,820,000
		Annual crops	85,000	Paddy rice	1,020,000
		Urban	25,000	-	
		Total	310,000		

Conclusions and look into the future

- Technology for using models, earth observation and open data for informing natural resource management and compiling accounts are developing rapidly
- Machine learning will increasingly dominate earth system modelling approaches.
- Level of detail, in time and in space, and high accuracy already present multiple policy use options
- Dependent upon 'big' data
- Need for further development:
 - Developing new models and approaches, testing in new areas, scaling up, connecting to users