SEASONAL ADJUSTMENT AND CORRECTION FOR EXTREME WEATHER EVENTS

THE CASE OF QUARTERLY GREENHOUSE GAS EMISSIONS

Roberto Astolfi (OECD) Achille Pegoue (IMF)

29th London Group Meeting The Maslow Time Square 11-14 September 2023, Pretoria, South Africa

usual seasonal fluctuations

extreme weather conditions

WHAT HOW WHY

WHAT

Climate change

HOW

$$\phi(L)\Phi(L^{s})(1-L)^{d}(1-L^{s})^{D}\left(y_{t}-\sum_{i}\beta_{i}x_{i,t}\right)=\theta(L)\Theta(L^{s})\varepsilon_{t}$$

$\begin{array}{ll} AR & I & reg & MA \\ \phi(L)\Phi(L^{s})(1-L)^{d}(1-L^{s})^{D} \left(y_{t}-\sum_{i}\beta_{i}x_{i,t}\right) = \theta(L)\Theta(L^{s})\varepsilon_{t} \end{array}$

MA ARreg $\phi(L)\Phi(L^{s})(1-L)^{d}(1-L^{s})^{D}\left(\mathbf{y_{t}}-\sum_{i}\boldsymbol{\beta}_{i}\boldsymbol{x}_{i,t}\right)=\theta(L)\Theta(L^{s})\varepsilon_{t}$ **Predictor-indicators Outliers** used to temporarily Working trading day disaggregate annual AEA Leap years (indirect approach) **Extreme weather conditions**

A wealth of regressors can capture the extreme weather conditions

- Temperatures
 - Frost day (<0^o)
 - Average daily air temperature (ADT)
 - Heating degree days (HDD)
 - Cooling degree days (CDD)
 - Comfort level threshold (CLT)
- Precipitations
 - Rain
 - Snow
- Sunny/cloudy days

- Sectors specific
 - Negative (i.e. temperature on manufacturing and constructions)
 - Positive on energy
- Local
 - Stronger evidence at sub-national level
- Bounce-back effects
 - The higher the frequency the stronger the evidence

- Model based approach
 - TRAMO-SEATS
- Empirical approach
 - X13-ARIMA-SEATS

all JD+ embedding regARIMA

- Data intensive
 - Weather related regressors
 - at sub national level
 - for a large number of countries
- Time consuming
 - Estimation performed at
 - sub national level
 - by economic sector
 - by GHGs

WHY

Different elaboration serve different users' needs

- Non-seasonal adjusted – level of the emissions
- Seasonal adjusted
 - compare two consecutive periods
 - compare variables/aggregates with different seasonal patterns
 - what would have happened if no season fluctuations had occurred
- Seasonal adjusted and weather corrected
 - what would have happened if weather conditions had been at their average values for the season
 - but also, what was the impact of the abnormal weather

SUMMING UP

Not all seasonal fluctuations are weather related

Not all weather-related fluctuations are seasonal

Can we disentangle usual seasonal fluctuations from extreme weather conditions?	
Yes, we have at least one methodology and software <i>regARIMA</i> <i>(JD+, TRAMO-SEATS, X-13-ARIMA-SEATS)</i>	HOW
to simultaneously seasonal adjust and correct time series for extreme weather conditions	WHAT
Serve different users' need Comparing consecutive periods What if weather conditions had been at their average values Show the impact of the abnormal weather conditions	WHY

OPTION FOR THE FUTURE: data intensive and time consuming

THANK YOU!

roberto.astolfi@oecd.org

APegoue@imf.org