

UNSD / WCMC SEEA Post-2020 workshop

Stefan van der Esch stefan.vanderesch@pbl.nl

PBL's involvement with SEEA / WAVES

- From statistics to policy
 - Place and function of statistics in policy development
- Global model results to develop accounts
 - Global assessments, scenarios
 - Examples where global modelled data are used to provide basic accounts

https://www.pbl.nl/en/publications/from-statistics-to-

From statistics to policy – key takeaways

- Information needs differ
 - per policy phase
 - per use
 - per audience
- Policy evaluation is a separate task that requires specific expertise and instruments
- Realise there can be multiple channels for linking statistics and policy
 - Policy evaluation institutes
 - Online accessible data
 - Mandatory (by law) reports and national committees

Phases in the policy cycle

Political importance →

Uses of environmental statistics

- Policy cycle:
 - awareness-raising, agenda-setting and prioritisation of environmental issues
 - supporting policy development
 - policy monitoring, evaluation and adjustment
- Others:
 - the extent and distribution of environmental costs and benefits;
 - international comparisons and obligations;
 - scientific research (not directly policy-related).

Figure 1.1 The environmental information pyramid

Different audiences

Policy evaluation as a separate task

- In most cases, raw statistical data not used in policy evaluation (in the Netherlands)
- Need to
 - Integrate analysis based on different data and sources
 - Against policy targets
 - Reasons for past developments check for cause/effect
 - Assess potential effects of future policies
 - Know about policy instruments, evaluation methods

Communication

- Example from online system:
 - Breakdown into categories
 - Time series
 - Policy target

8

 Data provided by non-profit organization

Figure 4.1 Market share of certified timber

Government target up to 2011

Source: Probos

By product group

Global model results as basis for accounts

- What to expect from global modelled indicators?
 - Big questions
 - Direction of change, order of magnitude, interactions
- Three examples:
 - Biodiversity in cooperation with Mexico
 - Soils ongoing, in cooperation with India and Mexico
 - UNCCD National reports

Land-use change per scenario, 2010 – 2050

SSP2 scenario

Source: PBL/IMAGE

Soil organic carbon

2010

Past, current, future projection for soil organic carbon

Change compared to natural situation, 2010

Change under the SSP2 productivity-decline scenario, 2010 – 2050

Source: Stoorvogel et al. 2017; Schut et al. 2015; PBL

No data

Global biodiversity and options to prevent biodiversity loss

Global biodiversity

Contribution of options to prevent biodiversity loss, 2050

Three examples

- Biodiversity
 - GLOBIO model, in cooperation with Mexico
 - Ecosystem extent, ecosystem condition (MSA)
 - Three levels of detail: global (0.75), aggregated national (0.72), detailed national (0.65)
 - Difference mainly caused by distinguishing secondary vegetation
- Soil accounts
 - Based on S-World
 - In progress
- UNCCD National reports

Figure 3.2 MSA in Mexico as function of land use and infrastructure (roads), based on the aggregated vector-based land-use map.

Figure 3.3 MSA in Mexico as function of land use and infrastructure (roads), based on the detailed vector-based land-use map.

Example of model-based indicator for Mexico

14

on the GLOBIO land-use map.

Figure 3.1 MSA in Mexico as function of land use and infrastructure (roads), based

S01-2

Trends in land productivity or functioning of the land

Land productivity dynamics

Quantitative data National level estimates of land productivity dynamics within each land cover type: area covered by each class of land productivity dynamics (in km²).

Default data are derived from the Joint Research Centre's Land Productivity Dynamics dataset

and they can be amended as appropiate

Net land productivity dynamics (2000-2013) (km²)

Land cover class	Declining	Moderate decline	Stressed	Stable	Increasing	No data
Tree-covered areas	5	10	89	1.130	2.261	6
Grassland	63	199	817	3.395	7.356	21
Cropland	19	44	337	4.009	9.389	45
Wetland	5	6	28	187	353	34
Artificial surfaces	20	9	114	1.111	1.257	15
Other land			1	25	3	17

Estimates of land productivity dynamics for areas where a land conversion to a new land cover type has taken place (in km²)

Land co Net area	nvérsión a change	Net area change	Net land pr	(km2)								
From	То	km²	Declining	Moderate decline	Stressed	Stable	Increasing					
Cropland 🛛 🚽	Artificial surf	967	9	5	64	332	553					
•	•											
Grassland 🛛 🚽	Artificial surf	270	5	2	20	62	179					
Tree-covered	Artificial surf	116	3	0	4	41	64					
Cropland 🛛 🚽	Grassland 🔽	56	0	0	6	11	39					
•	•							Î				
Add row												

Please answer the following questions if you have edited or replaced the default data using other data sources:

Pre-filled national reports based on global databases / modelled results

15

in browse all sect

United Nations Convention to Combat

Desertification

CHECKER Checkensing in code sint archer fallweiter (5 30

Aridity

Aridity index, 2010

Regional

Population in drylands, under the SSP2 scenario

Global

Source: PBL/IMAGE

- Biggest growth in SSA, North Africa & Middle East, South Asia
- 80% faster than average population growth (~+45% vs +25%)

Global Land Outlook: Future changes to land use and land condition

- How is land use expected to change over the coming decades?
- How will that influence the challenge to achieve global sustainability ambitions?
- How will continued land degradation exacerbate this challenge?
 Sustainable development goals (SDGs) with a strong relation to land

Source: UN: PBL

 SDG15.3 <u>not limited</u> to drylands

20

Interlinkages between key themes in global land systems

Source: PBL

Global agricultural area per scenario

Source: PBL/IMAGE

Change compared to natural situation, 2010

Change in soil organic carbon, per scenario, compared to natural situation

Net primary production

2010 compared to natural conditions

Change under the SSP2 productivity-decline scenario, 2010 – 2050

Areas with extremely low productivity

Insights:

- 28 million km2 productivity < natural
- ~ 5% lower NPP

Area with negative productivity trend, corrected for climate change, 1982 – 2010

Source: PBL

- 9 million km² shows human-induced productivity decline
- Sub-Saharan Africa most exposed

Agricultural land use and remaining suitable land, under the SSP2 scenario

Source: PBL/IMAGE

- Availability of land for agriculture increasingly limited, productivity per ha increases
- Expansion onto less productive areas and on vulnerable tropical soils
- Estimated ~12% of cropland shows signs of degradation
- Declining productivity increases cropland expansion by 5% to 2050

Carbon emissions from fossil fuel and land use, under the SSP2 productivity-decline scenario, 2010 – 2050

- Significant restoration potential in agriculture
- Restoration significant to carbon budget (170-320 Gt C)

٠

Global biodiversity and options to prevent biodiversity loss

Global biodiversity

Contribution of options to prevent biodiversity loss, 2050

Thank you, and looking forward to your questions.

Additional information:

Stefan.vanderesch@pbl.nl

Carbon emissions & 1.5 C climate target

Carbon emissions from fossil fuel and land use, under the SSP2 productivity-decline scenario, 2010 – 2050

Climate change may result in ${\sim}10\%$ lower yields by 2050 than otherwise

Impacts of climate change and land-based mitigation on agriculture, 2050

Source: PBL/IMAGE

Pressures on global biodiversity, per scenario, compared to natural condition

Source: PBL/IMAGE

Soil organic carbon

2010

Socio-economic drivers

Regional population, under the SSP2 scenario

Source: PBL/IMAGE

Uncertain future -> scenarios

Explorative scenarios to analyse future changes in land and ecosystem function

Source: PBL

Shared socio-economic pathways (SSPs)

- Developed for climate change assessments under IPCC
- Applied for land for the Global Land Outlook, hence coherent with the climate change community

Characteristics of major land-use components in the SSP storylines. These qualitative assumptions are quantified for the IMAGE SSPs (see Annex 2).

	SSP1 Sustainability	SSP2 Middle of the Road	SSP3 Fragmentation
Globalisation of trade	High	Medium	Low
Meat consumption and waste in the food chain	Low	Medium	High
Land-use regulation (e.g. protected areas)	Strict	Moderate	Low
Crop yield improvement	High	Medium	Low
Livestock system efficiency	High	Medium	Low

The 10 IMAGE regions used in this report

Source: PBL

Global GDP per capita, per scenario

Regional GDP per capita, under the SSP2 scenario

What affects future use and condition of land?

- Demands
- Availability
- Efficiency
- Water
- Climate change
- Land degradation

Demands for food, timber, bio-energy and urban

Global population, cropland and food supply

Agricultural production per scenario

Efficiency of crop yields and livestock systems

Cereal yield per region

- North America
- China
- Europe
- Latin America and Caribbean
- South Asia
- Middle East and Northern Africa
- Sub-Saharan Africa

World

Source: FAOSTAT; World Development Indicators 2017

<u>Water</u> availability and use

Reduction in crop production caused by local water shortages, 2010

Rainfed crop production

Irrigated crop production

What affects future use and condition of land?

- Demands
- Availability
- Efficiency
- Water
- Climate change
- Land degradation

Now, what if we add land degradation to the scenario?

Explorative scenarios to analyse future changes in land and ecosystem function

What is land degradation?

Degradation or progress?

Function-change or trade-offs?

Extensive land use

Intensive land use

Overall function loss

Grassland Pristine forest Selective logging

Original species

Subsistence agriculture

Effects from change in land use, land management and climate on land condition and ecosystem services

Source: PBL

Land condition & scenarios

PBL Netherlands Environmental Assessment Agency

Land properties & ecosystem functions

Change in major river-basins discharge, 2010 – 2050

SSP2 scenario (land use change and climate change effects) SSP2 scenario without climate change (only land use change effects)

Source: UU; PBL

The 10 IMAGE regions used in this report

Source: PBL

3. Regional overview

PBL Netherlands Environmental Assessment Agency

Overview of selected indicator outcomes, per region

Category	Indicator	Unit	No	orth America	Cent	ral and South America	Mic No	ddle East and rthern Africa	Sub-9	Saharan Africa	Wester	n and Central Europe	Russia	an region and Central Asia		South Asia		China region	So	utheast Asia	Japa	n, Korea and Oceania
			2010	Change 2010–2050	2010	Change 2010–2050	2010	Change 2010–2050	2010	Change 2010–2050	2010	Change 2010–2050	2010	Change 2010–2050	2010	Change 2010–2050	2010	Change 2010–2050	2010	Change 2010–2050	2010	Change 2010–2050
Socio-	Population	billion	0.46	31%	0.48	25%	0.38	61%	0.86	109%	0.61	11%	0.28	-1%	1.64	46%	1.38	-6%	0.59	26%	0.23	-2%
economic	Dryland population	million	113	36%	79	123%	373	60%	371	100%	176	17%	163	-5%	1010	53%	468	-17%	19	-91%	10	106%
	GDP per capita	2005 USD PPP	32,304	64%	5,105	200%	4,455	180%	963	378%	25,802	74%	4,338	260%	898	607%	3,634	704%	1,974	460%	28,537	81%
	Water stress ^a	number of people exposed (millions)	183	46%	214	11%	262	67%	234	109%	146	88%	70	73%	1533	46%	1256	-4%	414	29%	177	-2%
Demand	Food crops	kcal/cap/day	2,733	-3%	2,300	12%	2,549	0%	2,068	34%	2,624	-4%	2,460	2%	2,260	13%	2,594	-7%	2,403	21%	2,261	-2%
	Livestock products	kcal/cap/day	917	-3%	562	12%	289	17%	149	41%	891	1%	639	9%	221	0%	621	2%	244	24%	438	10%
	Water	km ³	233	8%	102	34%	181	9%	76	63%	174	9%	165	4%	673	24%	351	15%	57	62%	44	0%
	Import dependence (net trade in	million tonnes of dry matter per year	88	18% (2010),	22	6% (2010),	-59	-36% (2010),	-18	-6% (2010),	-25	-5% (2010),	21	12% (2010),	-12	-2% (2010),	-1	0% (2010),	9	2% (2010),	-24	-24% (2010),
	agricultural products)"			15% (2050)		-3% (2050)		-26% (2050)		0% (2050)		4% (2050)		30% (2050)		-4% (2050)		-6% (2050)		2% (2050)		-8% (2050)
	6 I I	···· · · 2								0/	. (-0/		-0/		-0/		0/		- 601	- 6	- 60/
Land use	Cropland`	million km ²	2.5	5%	1.5	32%	0.7	24%	2.3	55%	1.6	-1%	2.0	4%	2.2	7%	1.5	-15%	1.0	26%	0.6	56%
	Pasture	million Rm ²	3-3	-5%	4.6	8%	2.3	-1%	7.8	21%	1.0	-0%	3.3	-7%	0.4	10%	5.0	-1%	0.2	20%	4.0	0%
	Potential Available Cropland (PAC) per capita	hectares per capita	1.8	-24%	2.1	-20%	0.9	-38%	1.8	-52%	0.6	-10%	2.0	1%	0.2	-31%	0.0	0%	0.5	-20%	2.5	2%
	Remaining PAC	million km²	2.9	0%	4.5	-8%	0.2	-38%	6.1	-34%	1.5	3%	2.1	7%	0.7	-24%	0.9	14%	1.9	-9%	1.4	-8%
	Remaining High Quality PAC	million km²	2.3	0%	1.5	-6%	0.0	-2%	1.7	-26%	1.0	4%	1.7	6%	0.5	-24%	0.4	8%	0.9	-9%	0.4	-11%
	Average crop yield	tonnes per hectare	5.1	27%	3.1	58%	2.4	84%	1.2	105%	4.1	21%	1.9	48%	2.5	62%	5-4	39%	3.5	39%	2.1	13%
Land condition	% of natural land with reduced productivity compared to natural situation	%	13%		20%		11%		18%		17%		7%		35%		14%		23%		27%	
	Area with land management-related productivity decline ^d	million km²	1.2		0.4		0.2		3.7		0.4		1.4		0.3		0.8		0.3		0.7	
	Additional cropland required to compensate for productivity loss	% of 2010 cropland area		2%		1%		22%		7%		3%		4%		4%		3%		2%		5%
	Soil organic carbon loss®	GtC	28	2.5	20	2.0	4	0.7	30	12.0	13	1.2	29	2.5	14	1.7	17	0.8	13	2.0	8	1.6
	Biodiversity	Mean Species Abundance (MSA)	65%	-13%	65%	-18%	81%	-5%	70%	-20%	37%	-21%	73%	-10%	44%	-21%	56%	-13%	55%	-22%	71%	-19%
	Dryland areas	million km ²	8.7	-5%	5.1	-1%	10.9	0%	16.3	2%	2.0	5%	7.6	-11%	3.9	5%	6.9	-1%	0.1	-57%	7.2	2%

Regional water demand, under the SSP2 scenario

Source: UU/PBL

Carbon stocks in vegetation and soils, per biome, 2010

Source: PBL