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Abstract  

The paper illustrates to what extent the existing methodology for the 

correction for extreme weather events can be applied effectively to 

quarterly greenhouse gases emissions. Once clarified that not all seasonal 

fluctuations can be attributed to climatic variations, and that sporadic 

extreme weather fluctuations cannot qualify as seasonal, the paper reviews 

existing literature on adjusting time series for extreme weather events, 

showing to what extent different sectors of the economies can be exposed 

to the influence of extreme weather conditions, and describing how various 

elaborations -non-seasonally adjusted, seasonal adjusted and weather 

normalised data- can serve different needs of the users. The existing 

methodology for jointly seasonal adjust and correct for extreme weather 

events is then presented, including an iterative estimation strategy that can 

be used by national statistical offices.  
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The paper addresses the questions of whether statistics on quarterly greenhouse gases (GHG) emissions 

should be corrected for extreme weather events and whether existing statistical methodology can 

effectively be applied to do this. 

Recognizing the need for a timely review of short term evolution of Greenhous Gases (GHG)1 emissions, 

Eurostat, the International Energy Agency (IEA), the International Monetary Fund (IMF), the Organisation 

for Economic Co-operation and Development (OECD), and the United Nations Statistics Division (UNSD) 

partnered in 2021 to design a consistent methodological approach2 that could be used to produce seasonal 

adjusted quarterly GHG emissions accounts by industry and households consistent with GDP statistics 

(Astolfi et al., 2023[1]). The partnership led to the regular release of quarterly GHG emissions accounts for 

European Union (EU) countries and macro-regions. Nowadays, seasonal adjusted data are available for 

non-European economies with a lag of approximately four to five months, starting with the first quarter of 

20103.  

Seasonal adjustment refers to the process of elimination from the raw data of the seasonal fluctuations 

which result from the composite effect of weather as well as institutional events that regularly repeat every 

year. The adjusted series show only the variations that are due to long-term trends, business cycles (in 

the case of economic statistics), and any remaining unpredictable irregular movements. Seasonally 

adjusted data make it possible to compare the evolution of the series over consecutive periods. The 

information provided by seasonally adjusted data is crucial for analysts, decision-makers, and forecasters 

as it captures the core infra-annual movement of the series. 

Weather events are usually thought of as following predictable seasonal patterns that repeat in a similar 

manner every year. For instance, high temperatures characterise summers while low temperature are 

typically recorded in winter times. Moreover, some weather phenomena, such as snowfalls, only occur in 

specific seasons whereas others, such as rain, can occur over the course of the year though with higher 

intensities in certain months.  

 
1 GHGs include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases (F-gases). F-gases 

are hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride, and nitrogen trifluoride. 

2 Detailed methodological notes are available at: 

Eurostat: https://ec.europa.eu/eurostat/documents/1798247/6191529/Methodological-note-on-quarterly-GHG-

estimates.pdf/6bd54bde-4dd7-ebac-6326-f08c73eb9187?t=1644394935594;  

IMF: https://climatedata.imf.org/datasets/543872e1d86c49e3a3bdf38f2b758f92_0/about  

OECD: https://www.oecd.org/sdd/eea/Methods-Note-Producing-OECD-Quarterly-Air-Emission-Accounts.pdf   

3 Quarterly GHG emission data are available for the three organisations at:  

Eurostat: https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Quarterly_greenhouse_gas_emissions_in_the_EU  

IMF: https://climatedata.imf.org/datasets/543872e1d86c49e3a3bdf38f2b758f92/explore  

OECD: https://stats.oecd.org/Index.aspx?DataSetCode=OECD-AEA 

1 Introduction 

https://ec.europa.eu/eurostat/documents/1798247/6191529/Methodological-note-on-quarterly-GHG-estimates.pdf/6bd54bde-4dd7-ebac-6326-f08c73eb9187?t=1644394935594
https://ec.europa.eu/eurostat/documents/1798247/6191529/Methodological-note-on-quarterly-GHG-estimates.pdf/6bd54bde-4dd7-ebac-6326-f08c73eb9187?t=1644394935594
https://climatedata.imf.org/datasets/543872e1d86c49e3a3bdf38f2b758f92_0/about
https://www.oecd.org/sdd/eea/Methods-Note-Producing-OECD-Quarterly-Air-Emission-Accounts.pdf
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Quarterly_greenhouse_gas_emissions_in_the_EU
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Quarterly_greenhouse_gas_emissions_in_the_EU
https://climatedata.imf.org/datasets/543872e1d86c49e3a3bdf38f2b758f92/explore
https://stats.oecd.org/Index.aspx?DataSetCode=OECD-AEA
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Usual weather events are typically predictable though they may vary significantly from place to place on 

the globe. However, other weather events may occur sporadically with unusual and unpredictable 

intensities that significantly deviate from their typical seasonal patterns. Such events are called “extreme 

weather” events. They are defined by Intergovernmental Panel on Climate Change (IPCC)4 as: 

"An extreme weather event is an event that is rare at a particular place and time of year. Definitions of rare 
vary, but an extreme weather event would normally be as rare as or rarer than the 10th or 90th percentile of a 
probability density function estimated from observations. Obviously, the characteristics of what is called 
extreme weather may vary from place to place in an absolute sense. (Seneviratne et al., 2021[2]) 

Temperature, for instance, can reach exceptional high or low levels that may persist across several days. 

Such phenomena, called heat or cold waves, generate increasing concern. The World Meteorological 

Organization (WMO) established a task team in 2010 that proposed the following definitions for a heat and 

cold waves: 

"A marked unusual hot weather (Max, Min and daily average) over a region persisting at least two consecutive 
days during the hot period of the year based on local climatological conditions, with thermal conditions recorded 
above given thresholds".  

and,  

"A marked and unusual cold weather characterized by a sharp and significant drop of air temperatures near 
the surface (Max, Min and daily average) over a large area and persisting below certain thresholds for at least 
two consecutive days during the cold season." (Añel et al., 2017[3]) 

These definitions emphasise the local features of what may be considered an extreme weather event, 

implying that while a value of temperature may be considered extreme for a given part of the globe, it may 

be completely normal for another. Even if weather forecasters can anticipate approaching extreme weather 

events by a few days, these kinds of phenomena remain by their own nature erratic and normally cannot 

be predicted far ahead5. 

Although climate change and weather events are related, the WMO clarifies that the term “weather” 

describes the short-term events of the atmosphere whereas “climate” refers to the events of atmosphere 

occurring over relatively long periods of time, typically 30 years. The occurrence of extreme weather events 

has often been attributed to the impact of anthropogenic6 climate change, for instance by Peterson and 

colleagues (2013[4]) and IPCC  (2013[5]). A major concern is that the frequency, intensity, and length of 

extreme weather events will further increase by the end of the current century.  

Extreme weather events may result in natural hazards such as floods, drought, landslide, mudslide, or 

avalanche which in turn may lead to disasters, including loss of human and animal lives or severe material 

damage. However, natural hazards and related disasters are out of scope of the present study because it 

focuses on statistical methods that may be used to adjust quarterly GHG emissions resulting from 

anthropogenic activities. 

  

 
4 For more information on the IPCC see https://www.ipcc.ch/  

5 The IPCC 5th Assessment Report (WG 1 Glossary) differentiates extreme weather from extreme climate events. 

“When a pattern of extreme weather persists for some time, such as a season, it may be classed as an extreme climate 

event, especially if it yields an average or total that is itself extreme (e.g., drought or heavy rainfall over a season)." 

6 Resulting from human activity. 

https://www.ipcc.ch/


 

 

Seasonally adjusted data make it possible to compare the evolution of the series over consecutive periods 

of time. However, seasonal adjustment procedures do not eliminate all weather-related movements in the 

data. In fact, they only eliminate predictable and recurrent seasonal fluctuations. Any extreme weather 

event, such as prolonged heat waves or extremely cold winters, will remain in the seasonally adjusted data 

as part of the irregular component.  

This section addresses the question of whether statistics on seasonally adjusted quarterly greenhouse 

gases (GHG) emissions should be corrected for extreme weather events. It starts by looking at the 

literature on other instances where corrections for extreme weather events have been applied, and then 

considers the case for applying such corrections to quarterly GHG data. 

Extreme weather adjustments for economic time series 

To the best of our knowledge, only two papers (Boldin and Wright, 2015[6]) and (Pang, Bell and Monsell, 

2022[7])) propose an integrated approach that combines seasonal adjustment and correction for extreme 

weather events for economic data. All other studies on the influence of extreme weather events on infra-

annual statistics rely on seasonal adjusted figures looking at the influence of unusual weather events on 

quarterly GDP7, on the construction and energy sectors and on retail sales. These studies are discussed 

below. 

Quarterly GDP 

All papers studying the impact of unusual weather events on quarterly GDP were published around 2014, 

possibly because of the need to disentangle the post 2008 financial crisis business cycle fluctuations from 

the impact of the particularly harsh winter weather conditions that occurred across December 13 and 

January 2014. Noteworthy the fact that all studies used seasonal adjusted figures as starting point. 

Ouwehand and Van Ruth (2014[8]) analysed the impact of weather events on the Dutch seasonal adjusted 

quarterly GDP and value-added data on the national and sectoral level. They investigated the possible 

impact of temperatures, precipitations (both rain and snow), and sunny or cloudy days. Only temperature-

related weather effects were found to have influenced the economy significantly on a quarterly basis. 

Significant temperature-related indicators included the so called “degree days”, defined as the sum of the 

deviation of the daily average temperature from 18°C and the number of frost days (i.e. of days with a 

 
7 Dell et al (2014) provide an extensive review of the literature exploring the impacts of climate change on agricultural 

output, industrial output, labour productivity, energy demand, health, conflict, and economic growth, among other 

outcomes. As those studies focus on annual data, they are considered out of scope.  

2 Should we adjust quarterly 

greenhouse gas emissions for 

extreme weather events? 
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minimum air temperature below 0°C). Estimating a regARIMA model, Ouwehand and Van Ruth found that 

frost days had a negative impact on manufacturing whereas energy related sectors had been affected in 

the opposite direction due to the increased demand for heating. As a result, the overall impact on economy 

as a whole was relatively small.  

A similar approach was used by the Bundesbank analysing the impact of weather conditions on German 

quarterly GDP (Deutsche Bundesbank, 2014[9]). Looking at the number of frost days as a proxy for harsh 

weather conditions, researchers at the Bundesbank found that an extra frost day lowered GDP by just 

under 0.03% in the fourth quarter of 2013 and by around 0.07% in the first quarter 2014. The different 

impact across the two quarters may be explained by the rigidity of aggregated demand due to the end-

year festivities (Christmas and New Year). When analysing the impact at sectoral level, they reported that 

constructions was the most affected sector, with smaller impact recorded by manufacturing and services. 

They also found that a positive effect on the energy production sector.  

Bloesch and Gourio (2015[10]) investigated the impact the 2013-14 winter on the US economy using a fixed 

effects regression model on seasonal adjusted data. They concluded that the overall effect of weather 

variables on the economy as a whole was limited and therefore t other factors must have been at play to 

explain the weak performance of the USA GDP at the beginning of the year 2014. When extending their 

analysis to the economic sectors, they found that weather had had a significant, albeit short-lived, impact 

only on a few industries, including utilities, construction, hospitality, and, to a lesser extent, retail.  

The construction sector 

Papers focusing exclusively on the construction sector considered the impact that abnormal temperatures 

and precipitations (rain and snow) might have on housing starts, completions or prices either at national 

or regional level, typically finding stronger evidence of such an influence at local level. The Eurostat 

Handbook on Seasonal Adjustment (European Commission Eurostat, 2018[11]) mentions the correction for 

the influence of extreme weather conditions only in relation to constructions. 

Cammarota (1989[6]) identified the existence of significant albeit small influence of unseasonable weather 

on house started broadly differentiated winter from summer effects. Cammarota further refined the analysis 

to detect a significant impact of weather anomalies on housing starts in the first months of the year only, 

particularly at a regional level, with no evidence in subsequent months.  

Using a vector autoregression (VAR) approach, Coulson and Richard (1996[12]) tried modelling 

temperature, precipitation, housing starts, and housing completions simultaneously for each of the 

analysed regions founding that temperature shocks were more prominent in cold regions, precipitation 

mattered more than temperature in the South, and that neither mattered much in the West.  

In confirming some of the previous results, Fergus (1999[13]) noted that abnormal had a substantial 

contemporaneous effect on housing starts in January and February while abnormal precipitation had a 

significant impact in June and December, confirming that the impact of temperature and precipitations 

varies by region. Unlike the previous papers, however, he found that there were statistically significant 

lagged adjustments that in many cases offset the contemporaneous weather effects, suggesting that the 

long-term effect of abnormal weather is not so pronounced.  

The energy sector 

Finally, we found a lot of research analysing the impact of extreme weather events and climate change on 

the energy sector. Two types of impacts have been studied (Añel et al., 2017[3]):  

On the one hand, extreme weather phenomena affect energy production and its facilities as either cold or 

heat waves can generate increase in the demand for energy and, as a result, boost GHG emissions. During 

heat waves, high temperatures can affect the generation capacity of fossil fuel and nuclear-powered plants, 



 

 

as well to renewable technologies, due to increased air and water temperature. When the air temperature 

becomes very high, fuel efficiency is affected due to a lower oxygen concentration in the air. At the same 

time, also nuclear-powered plants might be affected by raising temperatures due to the reduced thermal 

efficiency of the plants and also because plants may experience refrigerating problems. Finally, high 

temperatures can impact on the efficiency of the transmission and distribution systems. The generalised 

loss in efficiency may result in an increase of GHGs emissions. All that associated with likely increase in 

the demand for energy caused by more intense use of coaling systems.  

On the other hand, the extreme weather conditions can stress the system for production of energy to the 

extent to induce blackouts, which will have the opposite effect in terms of GHG emissions.  

Cold waves can also affect the energy sector generating breakdowns in power plants or reducing oil and 

gas production. Moreover, they could also cause failures in airlines and towers, as ice and snow may 

accumulate in the insulation under freezing conditions, bridge them and cause a flashover.  

Retail sales 

Several papers studied the influence of weather events on retail sales in Europe. These included the impact 

of unexpected temperature deviations on apparel sales in France ( (Bertrand, Brusset and Fortin, 2015[14])); 

on sporting goods in Finland and Switzerland (Appelqvist et al., 2016[15]); the role of temperatures as well 

as precipitations (rain and snow) on food and fashion retail in a region of Germany (Arunraj and Ahrens, 

2016[16]) and on sales forecasting for e-commerce for a large European fashion retailer (Steinker, Hoberg 

and Thonemann, 2017[17]) or overall consumer spending in Swiss retail sales (Sandqvist and Siliverstovs, 

2021[18]).  All in all, studies on retails sales suggest that the effects of abnormal weather differ across 

seasons. Moreover, an interesting feature of these studies is the attention to the lagged adjustments, 

meaning that a decrease in retails associated to the impact of weather events may be offset by a symmetric 

increase as soon weather conditions go back to normal levels.  

The case for making extreme weather adjustments to quarterly GHG emissions 

When users observe abnormal movements in the seasonal adjusted data, a frequent enquiry is whether 

the anomalies can be explained by weather events. Quarterly GHG emissions can indeed be affected by 

unusual weather events, either during the winter or the summer season, due for example to the 

extraordinary use of fossil energy sources for heating or coaling by households and firms. 

The purpose of weather correction is precisely to help users to better understand the underlying 

movements in the data by producing time series that could be interpreted as a representation of what 

would have happened if weather conditions had been at their average values for the season. As a result, 

changes in the series from one period to the next are not due to abnormal weather conditions. 

Whenever quarterly GHG emissions are estimated indirectly using temporal disaggregation techniques, a 

valuable strategy is to weather correct the predictor indicators. Such an approach allows a detailed analysis 

of the possible impact of the unusual weather events in terms of either frequency of the data, as monthly 

or even daily data could be corrected, or geographical disaggregation where local data could be used 

instead of national data. 

However, should users be interested in the most accurate estimates of the actual levels of the emissions, 

that do reflect the extra movement due the impact of seasonal fluctuation and unusual weather events, 

raw figures should be preferred to the weather corrected and seasonal adjusted series. As producers of 

official statistics aim at meeting the need of all users, all possible elaboration should be released, including 

raw, seasonal adjusted and seasonal adjusted and weather correct series. 
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In reviewing exiting practices, we found that only the Australian Department for Climate Change and 

Energy Efficiency releases infra-annual seasonal adjusted GHG emissions also corrected for unusual 

weather conditions (Australian Government Dep of Climate Change, 2011[19]). Of note, however, the afct 

that the correction is limited to the effects of abnormal temperatures (“heating degree days” and “cooling 

degree days”) capturing the resulting demand for extra heating and cooling, and hence emissions. The 

significance of explanatory variables capturing temperature anomaly is tested in SEASABS8 using a 

regression approach prior to seasonally adjustment and trend-cycle extraction. The effect of the statistically 

significant variables is then entered as a “prior factor” and removed from the seasonally adjusted and trend 

series. 

There are three possible reasons why quarterly GHG emissions estimates have not been adjusted in other 

countries: first, users may not demand such information, as discussed above; second, the estimation of 

quarterly seasonal adjusted GHGs emissions itself is quite recent, and not many countries have yet 

produced such estimates9; and third, despite the extensive literature on either seasonal adjustment or 

analysis of the influence of extreme weather events, the two issues have seldom been analysed in an 

integrated manner.  

 
8 SEASABS is an ABS software package (McLaren, McCaskill and Zhang, 2006[9]). 

9 The international task force started in 2021. Only a few countries had implemented the production of quarterly GHG 

emissions series, including the Netherlands, Sweden, Australia, New Zealand and more recently the UK. Eurostat and 

the IMF started publishing quarterly estimates at the end of the year 2021 followed by the OECD in 2022. 



 

 

Existing methods 

Capturing the impact of extreme weather and climate events 

From a statistical standpoint, disentangling the relative impact of usual seasonal fluctuations, climate 

change and extreme weather events on time series is a challenging task. Boldin and Wright (2015[6]) state 

“the idea of preventing unusual weather from affecting seasonal factors is a little tricky in the presence of 

climate change, because unusual weather might change one's beliefs about seasonal norms”.  

Classical time series analysis is well equipped to address this issue in that climate change and weather 

events would affect to different extents the subcomponents of the time series such as trend, seasonal or 

the irregular depending on the frequency of the events. For instance, a continuous increase in average 

temperature across all months of the year and occurring over several years may determine a change in 

the trend component of the time series, whereas an increase of the highest temperatures recorded in the 

same month for several years may determine a change the variability of the seasonal component of the 

series. Finally, isolated hot months are typically included as outliers and assigned to the irregular 

component, unless a specific analysis is conducted.  

Immediate impact vs bounce-back effect 

Several studies aiming at isolating the impact of extreme weather events on time series (particularly on 

Economic time series) have considered the so called “bounce back effect”, meaning that the immediate 

impulse generated by the abnormal weather event and resulting in a decrease (or increase) in the time 

series of interest, may in some cases be followed by increase (or decrease) that offset the initial impact. 

For instance, a decrease in retail sales due to extremely heavy rains may be compensated by an above 

average level of sales in the following days should the weather conditions return to normal patterns. 

Similarly, the negative impact on GDP caused by particularly harsh winter conditions recorded in the first 

quarter of a year may be followed by an increase of equal magnitude in the next quarter (Bloesch and 

Gourio, 2015[10]). In the case of greenhouse gases (GHGs), however, we tend to exclude such a bounce-

back effect as above average emissions induced by extreme hot or cold waves are unlikely to be 

compensated by a return to normal temperature. 

Conceptual framework for infra-annual GHG data  

Quarterly GHG accounts are indirectly calculated using temporal disaggregation techniques following the 

indirect approach commonly applied in the compilation of other quarterly statistics including, among others, 

3 Can we adjust quarterly greenhouse 

gas emissions for extreme weather 

events? 
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quarterly national accounts. The indirect approach is typically used if the procedure used to estimate the 

annual data cannot be replicated for the corresponding sub-annual estimates because a full set of sub-

annual (monthly or quarterly) data is not available, as in the case of GHG emissions. 

The basic principle of temporal disaggregation is to interpolate the GHGs time series from the annual 

estimates of Air Emissions Accounts (AEAs)10 into quarterly values (backward series) and to extrapolate 

those quarters for which annual accounts are not yet available (forward series). The procedure shares 

similar properties and the same kind of techniques as those used in benchmarking. Both steps, 

interpolation and extrapolation, are performed with auxiliary information, that is, sub-annual (monthly or 

quarterly) “predictor-indicators,” which are considered sufficiently suited to approximate the quarterly 

developments of GHG emissions. The GHG emissions accounts can best be described as a four-

dimensional data cube consisting of geography, GHG, activity (industries and households), and time.  

Prior to their use as inputs in our temporal disaggregation, the predictor indicators are seasonally adjusted 

(including calendar and working day adjustment). As some predictor indicators are available a monthly and 

even daily frequency, it is preferable to seasonal adjusting the predictor indicators at their highest available 

frequency rather than the estimated quarterly variables resulting from the temporal disaggregation. Such 

a strategy allows capturing and adjusting seasonal and weather-related fluctuations that might otherwise 

be missed should more aggregated data be used. 

Seasonal adjustment techniques 

Methodological approaches to seasonal adjustment of time series can be clustered into two broad 

categories: model-based and empirical techniques.  

Model-based techniques assume that time series can be decomposed into unobserved components, 

typically including trend-cycle (TCt), seasonal (St) and irregular (It) components. The estimation of these 

components is seen as a problem of signal extraction. Following the original proposal of Wiener and 

Kolmogoroff, such techniques have been implemented in the TRAMO-SEATS programme by Gomez and 

Maravall and in the STAMP programme by Koopman et colleagues. 

On the other hand, empirical techniques use statistical smoothing methods without assuming the existence 

of a data generation process. One of the most widely used programmes embedding the empirical approach 

had originally been developed at the US Census Bureau (2017[20]) in the late sixties and has extensively 

evolved over time to the extent that its most recent version (X-13ARIMA-SEATS)11 also features model-

based elements derived from the SEATS programme by Gomez and Maravall (1994[21]). 

The most recent advancement in terms of programme development is JDemetra+, a tool developed by the 

National Bank of Belgium (NBB) in cooperation with the Deutsche Bundesbank and Eurostat in accordance 

with the Guidelines of the European Statistical System (ESS)12. JDemetra+ implements the concepts and 

algorithms of both TRAMO/SEATS and X-12ARIMA/X-13ARIMA-SEATS.  

The latest versions of the all the programmes mentioned above can be used to implement the regARIMA 

approach described in the remainder of this section. 

 
10 The AEAs are compiled by countries for the international standard known as the System of Environmental-Economic 

Accounting (SEEA). 

11 The software X-13ARIMA-SEATS is available at https://www.census.gov/data/software/x13as.html  

12 The latest JDemetra+ released version can be downloaded at: https://github.com/jdemetra  

https://www.census.gov/data/software/x13as.html
https://github.com/jdemetra


 

 

The econometric framework 

The regression-ARIMA approach (regArima) is widely used in the literature to combines in a single 

econometric framework the adjustment for regular infra-annual seasonal fluctuations along with the 

adjustment for the influence of calendar effects and any other sporadic event. As a result, the seasonal 

ARIMA (p,d,q)(P,D,Q) model is augmented by the addition of exogenous linear regression variables to 

capture the influence of trading and working days, leap year, national holidays occurring either at fixed 

dates (e.g. Christmas) or moving with respect to the Gregorian calendar (e.g. Easter, Ramadan or the 

Chines new year festivities), or any errant event, such as strikes, that may alter the identification of the 

trend-cycle components of the time series. As such, the set of regression variables can also include 

weather related variables (Pang, Bell and Monsell, 2022[7]) able to explain significant deviations from 

weather conditions expected in each season.  

Therefore, a general reg-ARIMA model can be formulated as 

𝜙(𝐿)Φ(𝐿𝑠)(1 − 𝐿)𝑑(1 − 𝐿𝑠)𝐷 (𝑦𝑡 − ∑ 𝛽𝑖𝑥𝑖,𝑡
𝑖

) = 𝜃(𝐿)Θ(𝐿𝑠)𝜀𝑡 

where 𝜙(𝐿) and Φ(𝐿4) are the nonseasonal and seasonal autoregressive (AR) polynomials of finite order 

p; P, 𝜃(𝐿) and Θ(𝐿4) are the nonseasonal and seasonal moving average (MA) polynomials of order q and  

Q; d and D are the integer nonseasonal and seasonal difference operators, 𝐿 is the lag operator (i.e. 𝐿𝑠𝑦𝑡 =

y𝑡−s , with s=4 for quarterly or 12 for monthly data), and 𝜀𝑡 is an independent and identically distributed 

error term with zero mean and constant variance 2. 𝛽𝑖 are the coefficients obtained from a linear 

regression of 𝑦𝑡 against the set of calendar or weather regressors 𝑥𝑖,𝑡. Notice that the set of weather 

regressors includes no lagged variables assuming that the impact of extreme weather conditions on the 

emissions of GHGs is only contemporaneous. 

The regression ARIMA model can be thought of either as generalization of a ARIMA model to allow for 

regression mean functions ∑ 𝛽𝑖𝑥𝑖,𝑡𝑖 , or as generalized regression model to allow the errors 𝑧𝑡 = 𝑦𝑡 −

∑ 𝛽𝑖𝑥𝑖,𝑡𝑖 to follow a seasonal ARIMA model which addresses the possible presence of autocorrelation in 

the residuals. 

An iterative estimation strategy 

The estimation strategy can be based on an iterative approach towards an optimal model specification. In 

empirical research, iterations typically follow either a top-down or bottom-up procedure. In the former, a 

model including all candidate regressors is first estimated to then remove insignificant regressors iteratively 

to arrive at the optimal specification. In the bottom-up procedure, on the other hand, models including 

individual candidate regressors are first estimated to retain only significant regressors. Based on the initial 

selection, sets of multiple regressors are further tested to arrive to the optimal specification. For the 

purposes of the regArima specification problem, Pagan and colleagues (2022[7])suggest opting for the 

bottom-up procedure. Therefore, the reminder of this section describes in further detail the iterative bottom-

up estimation strategy. 

Before starting to assess the significance of individual regressors, a preliminary phase requires the 

estimation of a benchmark specification that includes no regressors. The time series of interest is therefore 

fitted with airline model SARIMA(0,1,1)(0,1,1)S using default options from X11 (Step 1 in figure XX below). 

Such a benchmark specification allows identifying: 

• Log transformation 

• Trading/working days 
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• Easter effects  

• Leap year 

• Outliers 

as well as calculating the F-adjusted version of the Akaike Information Criteria (AICC) that will be used in 

the subsequent steps to compare the benchmark model against competing specification in the following 

steps. 

Holding the benchmark specification (i.e. leaving unchanged log transformation, outliers, trading/working 

days, Easter effects and Leap year), the airline model is re-estimated as many times as the number of 

available candidate regressors adding each of them one at the time (Step 2).  

Should the time series to be modelled cover a sufficiently long timespan, it would be recommendable to 

replicate step 2 on two additional but disjoint sub-spans, each covering half of the full sample. The 

comparisons across the three resulting samples (first half, second half and full sample,) allows cross 

validating the results or identifying possible breaks and structural changes in the original series (Step 3). 

To assess whether the inclusion of weather regressors improves the model specification, the AICCs 

associated to each specification are compared and only if the specifications showing a reduction in the 

AICC of at least 5 points are retained. Should the two sub spans mentioned in step 3 above be available, 

the same comparison based the AICC should be applied across all three samples. (Step 4) 

For all retained models, the t-statistic is used to verify the significance of the parameters (|t-stat|>2) and, 

should a parameter be significant, its sign is checked against expectations. In addition, any significant 

change in the parameters of both annual and seasonal moving average components (MAY and MAS) 

should be scrutinised. As for step 4, also in this case the checks should be extended to all available time 

sub-spans (Step5). 

Next is the analysis of the outliers. The hypothesis is that some of the outliers originally identified for the 

benchmark model (Step 1) could indeed be explained by some extreme weather events. Should that be 

the case, the number of outliers in the models that include the weather regressors is expected to reduce. 

That said, care should be paid to new outliers that may have emerged or whether the type of outliers13 

originally identified in the benchmark model had changed as result of the introduction of the new weather 

regressors (Step 6). 

It is possible that the influence of some weather regressors could be more accentuated in specific parts of 

the year. To verify such a hypothesis, month specific regressors can be used (Step 7). They are built as 

dummy variables assuming the value of the original weather regressor only in the months of interest: 

𝑉𝑡
(𝑚)

= 𝑉𝑡 𝑓𝑜𝑟 𝑚𝑜𝑛𝑡ℎ 𝑚 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Where m =1,…, 12 represents the months of the year. The resulting twelve month-specific indicators can 

then be individually tested for each weather regressors by repeating the procedure for the weather 

regressors as described above (Steps 8 to 11). Any months that would produce singularities in the 

regression matrix (i.e., the values for that month were 0 over the entire modelling span) should be omitted. 

Only models with significant parameters and that reduce the AICC should be retained. This part of the 

bottom-up estimation strategy concludes the analysis of individual regressors. 

The second and last part of the procedure checks for the simultaneous inclusion of multiple regressors. To 

keep the exercise manageable, only sets of up to a limited number of regressors are considered (e.g. up 

to 4 regressors). Should it be possible to cluster the regressors on the basis of their characteristics (e.g. 

 
13 The most common type of outliers include: Additive outlier (AO), Transitory Change (TC), Level Shift (LS) and 

Seasonal Outlier (SO) 



 

 

temperature, precipitation, snow), an additional constraint can be added in that at least one regressor for 

each cluster should be included in sets larger or equal to the number of cluster. (Steps 12 and 13). 

Finally, the procedure assesses whether the inclusion of the best set of weather regressors bring an actual 

improvement as compared to the simple seasonal adjustment procedure with no correction for extreme 

weather conditions. To do that, the specification including the best performing set of weather regressors is 

estimated with no constraint on the outliers. An initial graphical inspection is performed by overlapping 

series the seasonal adjusted series with no weather regressors (SA) with the that resulting from the best 

performing specification including weather related regressors (SWA). Such a graphical inspection allows 

verifying the relative smoothness along with a comparison of location and type of outliers (Step 14). The 

graphical inspection is completed by the analysis of the chart displaying the ratios od SA/SWA ratios by 

month (Step 15): large variabilities by month may indicate that the impact of the weather correction is more 

pronounced in specific parts of the year (typically the winter and summer months). Similar indications may 

come from the average absolute percent difference between the SA and SWA series computed by month 

(Step 16). In this case, months exhibiting average differences above 10 percent may suggest the presence 

of a significant correction for weather conditions. 

  



 

 

 

 

 

 
 

1 Base Model: fit an 
airline model 
SARIMA(0,1,1)(0,1,1))
, with default options 
from X11 on the full 
sample, to identify:

•Log transformation

•Outliers

•Trading days effect

•Easter effect

•Leap year effect

SAVE specification 
and AICC

2 W models: fixing

•Log transformation

•Outliers

•Trading days

•Easter effects 

•Leap year

from step 1, fit airline 
models with the 
addition of one 
weather regressor at 
the time. 

3 In addition to the full 
sample, repeat step 2 
onto two disjoint sub 
spans of equal length 
to cross check results

4 Check DAICC (AICC 
Base model-AICC vs 
W models)

Retain models where 
DAICC<-5 
simultaneously for the 
full-sample and the 
two sub spans

5 Check the sign of 
beta, its significance 
(|t-stat|>2) for the full-
sample as well as for 
the two sub spans 

Compare parameters 
of the MAY and MAS 

Check  for significant 
changes

6 Outliers

Verify if outliers 
identified in stage 2 
are confirmed or If 
some disappear 
because  captured by 
the weather 
regressors

7 Built month specific 
regressors for each 
weather regressor

𝑉𝑡
𝑖

= 𝑉𝑡 𝑓𝑜𝑟 𝑚𝑜𝑛𝑡ℎ 𝑖 ,

= 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

8 Fit each month 
specific weather 
regressors in the 
airline model as in 
step 3 

9 Check t-stat month-
specific regressors 
using the full sample 
as well as the two sub 
spans. 

Omit any month that 
would produce 
singularities in the 
regression matrix (i.e., 
the values for that 
month were 0 over the 
entire modelling span) 
were omitted 

1
0 Re-fit the model 

retaining only the 
significant variables

Compared AICC 
against the baseline 
model and those using 
the original regressors

1
1 Check sign of beta, its 

significance (|t-stat|>2) 
for the full-sample as 
well as the two sub 
spans

1
2 Set multiple 

regressors

Cluster weather 
regressors (e.g. 
temperature, 
precipitation, snow) 
then make sets of up 
to 4 regressor. For 
sets with 3 or 4 
regressors at least 
one for each cluster

1
3 Repeat steps 2 to 11 

and select models 
including multiple 
regressors  using the 
min AICC criteria

1
4 Final comparison 

SA vs SWA

X-11 with setting 
determined by 
X-13ARIMA SEATS 
Outliers free

Graphical inspection 
to check AO and LS

1
5 Ratio by months

1
6 Calculate Average 

absolute percent 
difference by month 
for the full sample and 
the sub spans an 
check if any month 
exceed 10%
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Weather correction can help users to better understand the underlying movements in data. Resulting time 

series could be interpreted as a representation of what would have happened if weather conditions had 

been at their average values for the season, so that changes from one period to the next in the seasonal 

adjusted data can be directly compared. 

This paper has investigated whether currently existing statistical methodology allows modelling in an 

integrated way both regular seasonal fluctuations (including calendar effects) and extreme weather events 

when estimating quarterly greenhouse gases (GHG) emissions. 

We argue that regARIMA methodology is well suited to the task and offers a valid tool that not only permits 

to seasonal adjust and correct for extreme weather events historical time series but also differentiating the 

impact of long-term climate change from that of short-term weather events. 

The regARIMA methodology has been widely used in official statistics to correct raw data for calendar 

effects and for the identification of outliers, so that a large body of applied experience is currently available 

worldwide. Based on the experience developed by the US Census Bureau (Pang, Bell and Monsell, 

2022[7]), we propose a standard estimation strategy that may allow standardising current practices. 

4 Conclusions 
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