9th Ecosystem Services Partnership World Conference

Mainstreaming Ecosystem Services in Policy-Making in China

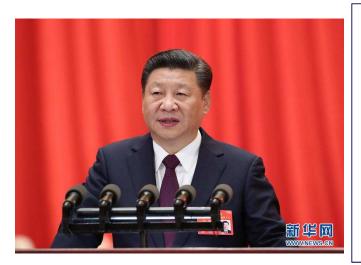
Zhiyun Ouyang

Research Center for Eco-Environmental Sciences
Chinese Academy of Sciences

December 11-15, Shenzhen, china

Mainstreaming ecosystem services

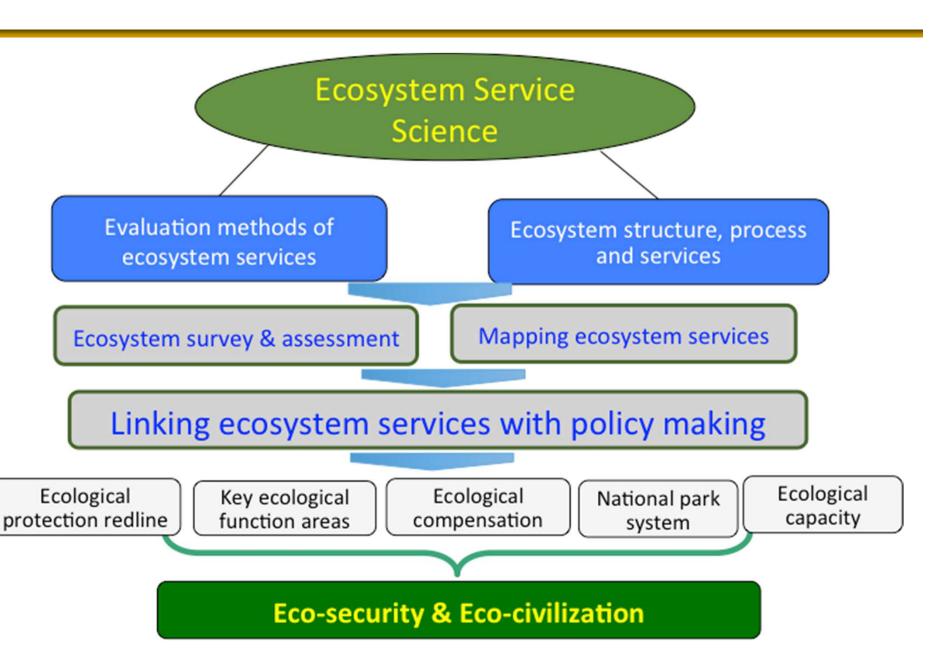
- → Background
- → GEP accounting methods and cases
- ★ China ecosystem survey and assessment
- → Mapping ecosystem services of China
- ★ Linking ecosystem services to policy-making


Background

China's environment is facing increasing challenges from

- → Huge population: 1.38 billion
- ♦ Fast urbanization: Urban rates 57 % in 2016, 36% in 2000
- ♦ Massive natural resource exploitation
 - Coal mining: 3.7 billion tons
 - Fresh water withdrawn: 326.3 billion M³
- ♦ Ecosystem service decline and wildlife habitat lost
 - Soil erosions and and rocky desertification,
 - Frequency of sandstorm, flooding
- ♦ Vicious-circle of ecosystem degradation and poverty

Background

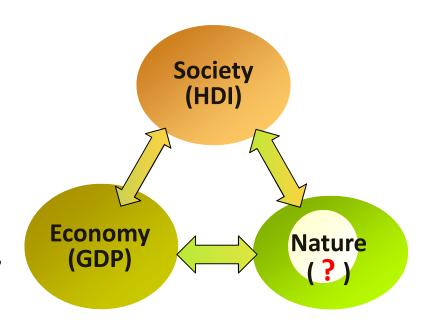

In both 18th and 19th National Congress of the Communist Party declared China's Dream

- ♦ Harmonizing people and nature
- ♦ Building the ecological civilization of the 21st century

Key issues: how to coordinate conservation and development?

- ✓ Where we must protect to ensure sustainable supply of ecosystem services?
- ✓ How to achieve natural capital conservation & poverty alleviation?
- ✓ How to evaluate the development achievements, not only GDP?

Background



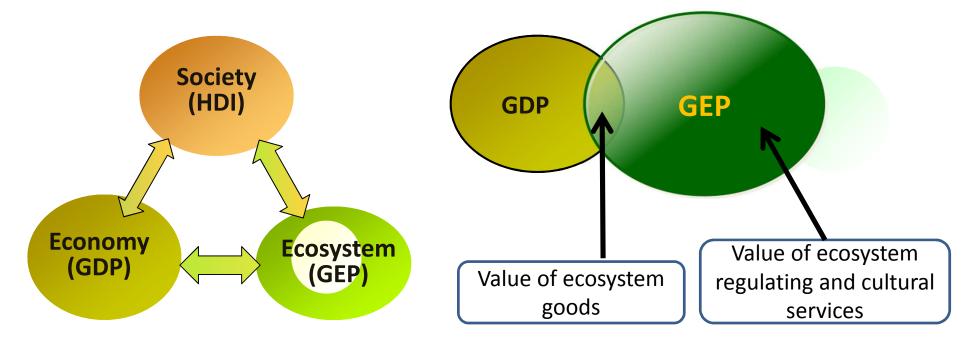
Gross ecosystem product

Region is a coupled nature-economic-social system

- Economy: GDP is widely used to measure economic system performance.
- ❖ Society: HDI(Human development index) is used to measure social development status based on health, education and living-standard since 1991.
- ♦ Nature: currently we do not have widely used index to measure its contribution to human wellfare.

Gross Ecosystem Product, GEP

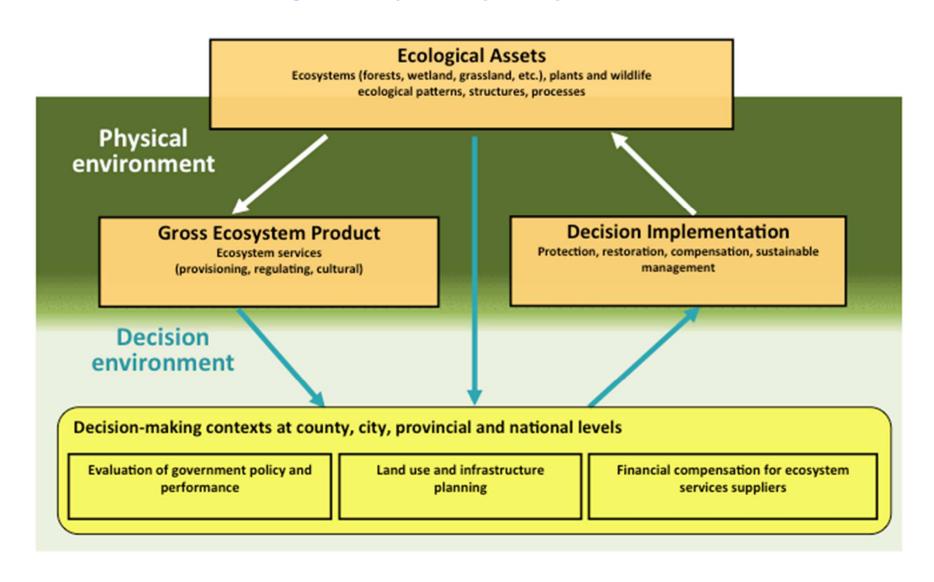
- **★**Gross Ecosystem Product (GEP) is the total value of final ecosystem goods and services supplied to human well-being in given region annually, like a county, or a province, a county.
- **★**Ecological asset (EA) is the natural asset that provides ecosystem goods and services.
- **→** Ecosystems:
 - Natural ecosystem: forests grasslands, wetland, desert, marine, ...
 - Managed ecosystem: cropland, orchards, aquaculture farms, urban green-space, ...
 - ♦ Wildlife,



Purposes of GEP accounting

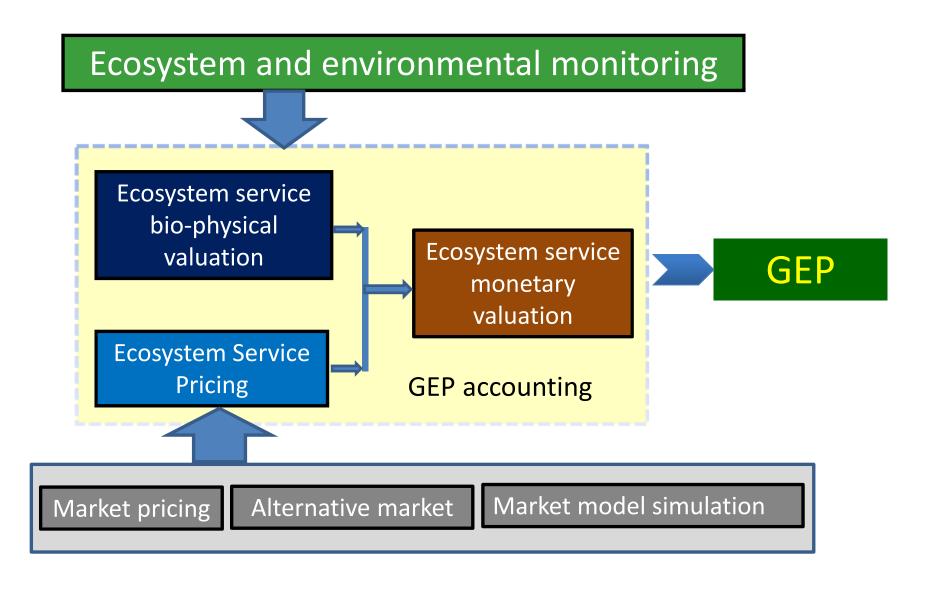
- ♦ Assessment/description of ecosystem status
- → Evaluation of the contribution of ecosystems to human welfare
- ♦ Assessment of effectiveness of conservation efforts
- ♦ Reveal the ecological linkages among regions
 - ✓ Ecological dependency
 - ✓ Ecological supporting

Concept of GEP


→ GDP, HDI, and GEP

- → GEP, GDP and Green GDP
 - ✓ GEP, The goods and services provided by ecosystems.
 - ✓ GDP, the goods and services provided by economic systems.
 - ✓ Green GDP, the GDP minus natural and environmental costs,

GEP accounting and policy implementation



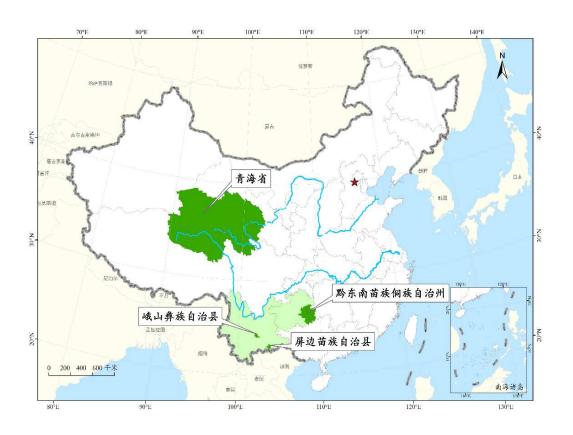
The principle of GEP accounting

- ♦ Use value of ecosystem services
 - Direct use value: food, bio-energy, water resource,
 - ✓ Indirect use value: water retention, soil retention, pollutant purification, climate regulation
- ♦ The value of final eco-services
 - Ecosystem goods, regulating services, cultural services
- ♦ The bio-physical value accounting
 - Amount of food production, amount of water retention, amount of soil retention,
- ♦ The monetary value accounting
 - ✓ The economic value of ecosystem services

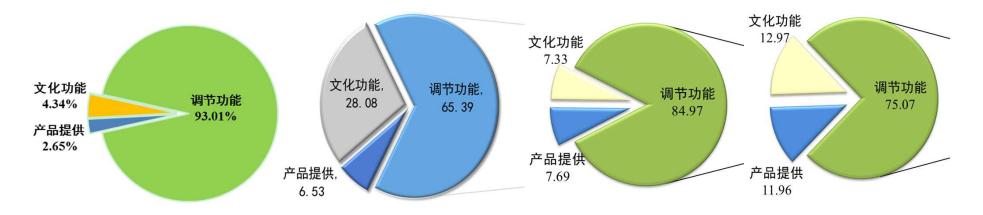
- Accounting of economic values of ecosystem services
 - ✓ GEP: the total economic value of ecosystem provision (EPV), Ecosystem regulating services (ERV) and cultural services (ECV) in the given area annually.

$$GEP = EPV + ERV + ECV$$

$$GEP = \sum_{i=1}^{n} EP_i \times P_i + \sum_{j=1}^{m} ER_j \times P_j + \sum_{k=1}^{l} EC_k \times P_k$$


Ecosystem services

Categories	Goods and services (examples)
	Food: grain, vegetable, fruits, meat, milk, egg, fish,
Ecocystom	Materials: wood, fiber, water, genes,
Ecosystem goods	Energy: bio-energy(fuelwood), hydro-power, wind
goods	energy,
	Others: medicine, seedling, ornament
	Regulation services: water conservation, soil
	conservation, carbon sequestration, climate regulating,
Regulating	pollutant purification, pollination,
services	Protecting services: sand storm prevention, flooding
	mitigation, pest control,
Cultural comits	Aesthetic services: recreation and ecotourism
Cultural service	Cultural value: knowledge, education, arts, spirit


GEP accounting in

Qinghai, Qiandongnan and Eshan, Pingbian

GEP accounting of pilot areas

Areas	GEP (billion yuan)	Provisioning services (billion yuan)	Regulating services (billion yuan)	Cultural services (billion yuan)	GEP/GDP	GEP density (million yuan/km²)	Per capita GEP (yuan/person)
Qinghai Province	1714.83	45.38	1595.04	74.41	7.09	2.37	291,637.2
Qiandongnan Autonomous Prefecture	413.63	27.00	270.48	116.16	5.1	13.63	118,676.2
Pingbian County	18.08	1.39	15.36	1.33	7.02	9.49	115,891.0
Eshan County	15.78	1.89	11.84	2.05	2.53	8.00	103,848.7

The value of regulating services accounted for 93.01% of the GEP in Qinghai Province in 2015

Services Indicators		Quantificat	ion	Value	Total	
Services	indicators	Quantification	Unit	(billion yuan)	(billion yuan)	
Water conservation	Amount of water conservation	638.72	10 ⁸ m ³	517.36	517.36	
	Amount of soil retention	3.91	10 ⁸ m ³	6.99		
Soil retention	Reduction of nitrogen non-point source pollution	0.08	10 ⁸ t	14.58	28.38	
	Reduction of phosphorus non-point source pollution	0.02	10 ⁸ t	6.81		
Sand fixation	Amount of sand fixation	11.74	10 ⁸ t	33.19	33.19	
	Amount of lakes flood mitigation	48.04	10 ⁸ m ³	38.91		
Flood mitigation	Amount of reservoirs flood mitigation	11.60	10 ⁸ m ³	9.40	60.75	
	Amount of swamps flood mitigation	15.36	10 ⁸ m ³	12.45		
	Amount of sulfur dioxide absorption	93.63	10 ⁴ t	1.18	1.25	
Air purification	Amount of nitrogen oxide absorption	4.92	10 ⁴ t	0.06		
	Reduce the amount of industrial dust	2.11	10 ⁴ t	0.003		
	Reduction in the amount of COD emission	220.39	10 ⁴ t	3.09		
Water purification	Reduction in the amount of total nitrogen emission	17.08	10 ⁴ t	0.3	3.86	
	Reduction in the amount of total phosphorus emission	17.08	10 ⁴ t	0.48		
Carbon	Amounts of carbon sequestration	0.2567	10 ⁸ t	9.91	23.57	
sequestration -oxygen release	Amounts of oxygen release	0.1867	10 ⁸ t	13.66	23.37	
Climate regulation	Energy consumption of plant transpiration	6534.60	10 ⁸ kwh	346.33	917.82	
Climate regulation	Energy consumption of water surface evaporation	10782.81	108 kwh	571.49	917.82	
Biological control	Area of pests and diseases occurrence	0.29	10 ⁸ mu	8.85	8.85	
	Total			1,595.04	1,595.04	

The value of regulating services accounted for 65.39% of the GEP in Qiandongnan Prefecture

Services	Indicators	Quantification		Value	Total
Services	indicators	Quantification	Unit	(billion yuan)	(billion yuan)
Water conservation	Amount of water conservation	137.26	10 ⁸ m ³	111.183	111.183
	Amount of soil retention	24.84	10 ⁸ m ³	9.043	
Soil retention	Reduction of nitrogen non-point source pollution	0.09	10 ⁸ t	16.087	32.642
	Reduction of phosphorus non-point source pollution	0.03	10 ⁸ t	7.513	
	Amount of lakes flood mitigation	0.02	10 ⁸ m ³	0.014	
Flood mitigation	Amount of reservoirs flood mitigation	16.54	10 ⁸ m ³	13.395	13.409
	Amount of sulfur dioxide absorption	45.27	10 ⁴ t	0.57	
Air purification	Amount of nitrogen oxide absorption	1.71	10 ⁴ t	0.021	0.594
	Reduce the amount of industrial dust	1.17	10 ⁴ t	0.002	
	Reduction in the amount of COD emission	1.98	10 ⁴ t	0.028	
Water purification	Reduction in the amount of total nitrogen emission	0.15	10 ⁴ t	0.003	0.035
	Reduction in the amount of total phosphorus emission	0.15	10 ⁴ t	0.004	
Carbon	Amounts of carbon sequestration	0.15	10 ⁸ t	5.817	
sequestration -oxygen release	Amounts of oxygen release	0.11	10 ⁸ t	8.023	13.84
	Energy consumption of plant transpiration	1689.63	10 ⁸ kwh	89.391	
Climate regulation	Energy consumption of water surface evaporation	105.29	10 ⁸ kwh	5.581	94.972
Biological control	Area of pests and diseases occurrence	0.12	10 ⁸ mu	3.801	3.801
	Total			270.475	270.475

The value of regulating services accounted for 84.97% of the GEP in Pingbian County

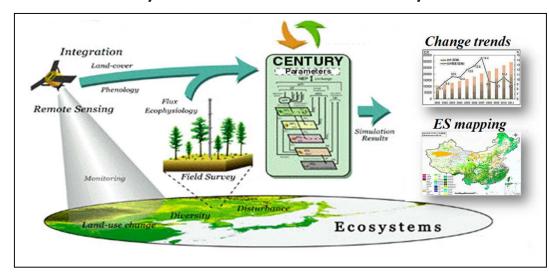
Services	Indicators	Quantification		Value	Total	
Services	indicators	Quantification	Unit	(billion yuan)	(billion yuan)	
Water conservation	Amount of water conservation	9.99	10 ⁸ m ³	8.099	8.099	
	Amount of soil retention	0.26	10 ⁸ m ³	0.465		
Soil retention	Reduction of nitrogen non-point source pollution	0.0052	10 ⁸ t	0.916	1.809	
	Reduction of phosphorus non-point source pollution	0.0015	10 ⁸ t	0.428		
Flood mitigation	Amount of reservoirs flood mitigation	0.0153	10 ⁸ m ³	0.012	0.012	
	Amount of sulfur dioxide absorption	2.32	10 ⁴ t	0.03		
Air purification	Amount of nitrogen oxide absorption	0.09	10 ⁴ t	0.001	0.031	
	Reduce the amount of industrial dust	0.06	10 ⁴ t	0.0001		
	Reduction in the amount of COD emission	0.08	10 ⁴ t	0.001		
Water purification	Reduction in the amount of total nitrogen emission	0.01	10 ⁴ t	0.0001	0.001	
	Reduction in the amount of total phosphorus emission	0.01	10 ⁴ t	0.0002		
Carbon sequestration	Amounts of carbon sequestration	0.0070	10 ⁸ t	0.269	0.64	
-oxygen release	Amounts of oxygen release	0.0051	10 ⁸ t	0.371	0.04	
Climata regulation	Energy consumption of plant transpiration	85.51	10 ⁸ kwh	4.532	4.748	
Climate regulation	Energy consumption of water surface evaporation	4.08	10 ⁸ kwh	0.216	4.740	
Biological control	Area of pests and diseases occurrence	0.0007	10 ⁸ mu	0.022	0.022	
	Total			15.362	15.362	

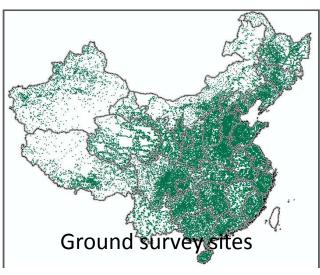
The value of regulating services accounting for 75.07% of the GEP in Eshan County

Comicae	Indicators	Quantification		Value	Total	
Services	Indicators	Quantification	Unit	(billion yuan)	(billion yuan)	
Water conservation	Amount of water conservation	4.34	10 ⁸ m ³	3.518	3.518	
	Amount of soil retention	0.21	10 ⁸ m ³	0.384		
Soil retention	Reduction of nitrogen non-point source pollution	0.004	10 ⁸ t	0.74	1.469	
	Reduction of phosphorus non-point source pollution	0.001	10 ⁸ t	0.345		
Flood mitigation	Amount of reservoirs flood mitigation	0.26	10 ⁸ m ³	0.214	0.214	
	Amount of sulfur dioxide absorption	2.94	10 ⁴ t	0.037		
Air purification	Amount of nitrogen oxide absorption	0.11	10 ⁴ t	0.001 0.0381		
	Reduce the amount of industrial dust	0.07	10 ⁴ t	0.0001		
	Reduction in the amount of COD emission	0.18	10 ⁴ t	0.002		
Water purification	Reduction in the amount of total nitrogen emission	0.01	10 ⁴ t	0.0002	0.0026	
	Reduction in the amount of total phosphorus emission	0.01	10 ⁴ t	0.0004		
Carbon sequestration	Amounts of carbon sequestration	0.0055	10 ⁸ t	0.212	0.505	
-oxygen release	Amounts of oxygen release	0.004	10 ⁸ t	0.293	0.505	
Climata regulation	Energy consumption of plant transpiration	105.45	10 ⁸ kwh	5.589	6,002	
Climate regulation	Energy consumption of water surface evaporation	9.49	10 ⁸ kwh	0.503	6.092	
Biological control	Area of pests and diseases occurrence	0.0001	10 ⁸ mu	0.003	0.003	
	Total			11.843	11.843	

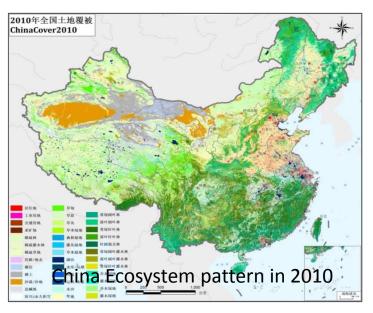
GEP change of pilot areas

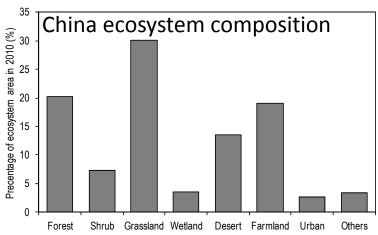
Areas	Services	2015	2010	2000	2000-2015 Change rate (%)
	Provisioning services (billion yuan)	45.38	43.09	14.15	126.3
Qinghai	Regulating services (billion yuan)	1595.04	1467.29	1331.89	7
Province	Cultural services (billion yuan)	74.41	21.31	3.3	1490.7
	GEP (billion yuan)	1714.83	1531.69	1349.34	13.1
Oiandananan	Provisioning services (billion yuan)	27.00	11.91	5.38	254.13
Qiandongnan Autonomous	Regulating services (billion yuan)	270.48	244.65	203.12	8.49
Prefecture	Cultural services (billion yuan)	116.16	32.92	0.42	19272.18
rielecture	GEP (billion yuan)	413.63	289.48	208.93	60.62
	Provisioning services (billion yuan)	1.39	0.97	0.42	133.23
Pingbian	Regulating services (billion yuan)	15.36	13.77	11.23	6.47
County	Cultural services (billion yuan)	1.33	0.45	0.08	1668
	GEP (billion yuan)	18.08	15.19	11.73	19.73
	Provisioning services (billion yuan)	1.89	1.19	0.72	84.1
Eshan	Regulating services (billion yuan)	11.84	10.92	10.37	-2.54
County	Cultural services (billion yuan)	2.05	0.64	0.07	3001.52
	GEP (billion yuan)	15.78	12.74	11.16	19.13


- → 2000-2015, GEP of the studied areas were increased.
- ★ Regulating services value increased : Qinghai, Qiandongnan and Pingbian;
- ★ Regulating services value decreased : Eshan.

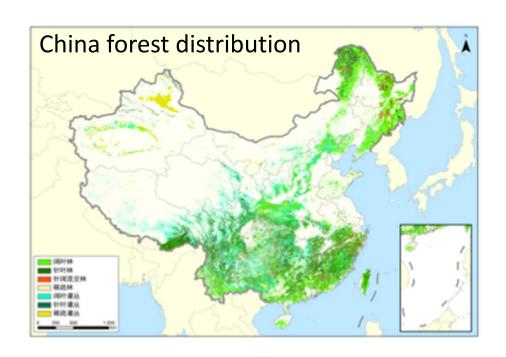

Mainstreaming ecosystem services

China ecosystem survey and assessment


China ecosystem survey and assessment


- Scales: Provincial (31)—Regional—National scales
- Remote sensing data: 21,808 images for 2000, 2005, 2010,2015
- Ground survey sites: 114,500
- Model: InVEST and others
- Goals: Build an overall image of ecosystem status of China
 - ✓ Ecosystem distribution and patterns
 - ✓ Ecosystem quality and their changes
 - ✓ Ecosystem services and their changes
 - ✓ Identify crucial areas for ecosystem services

China ecosystem composition and patterns



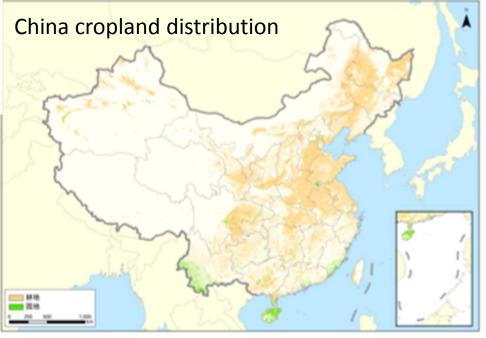
Ecosystem	Areas	Percentages
types	(km²)	(%)
Forests	190.83	20.17
Shrubs	69.23	7.32
Grassland	283.68	29.98
Wetland	35.61	3.76
Desert	127.73	13.50
Cropland	181.59	19.19
Urban	25.41	2.69
Others	32.02	3.38

Grassland, forest, cropland and desert were made of 82.8% of total area of China

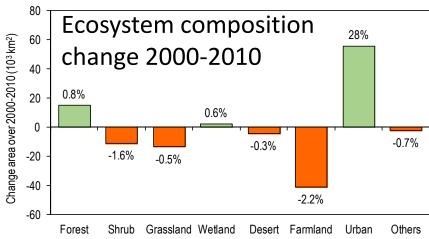
Forest and grassland ecosystem distribution and changes

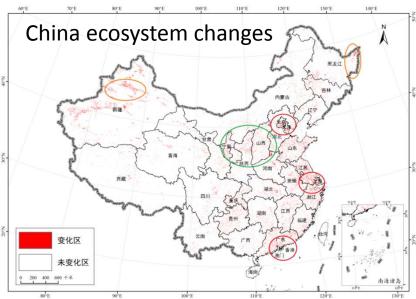
Forest increased 29.1x10³ km² (+1.5%) during 2000-2010.

Grassland decreased 16.3x10³ km² (-0.56%) during 2000-2010.



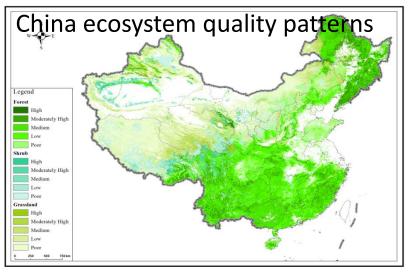
Wetland and cropland ecosystem distribution and changes

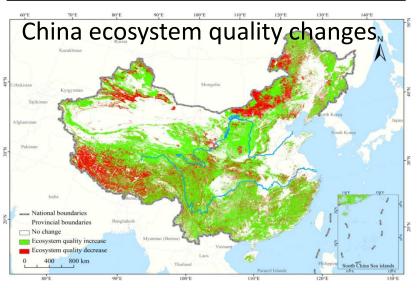



- Areas of lake and reservoirs increased 3663.6 km²
- Marsh decreased 4801 km² during 2000-2010.

Cropland decreased 48.2x10³ km² (-2.6%) during 2000-2010.

Changes of ecosystem composition and pattern

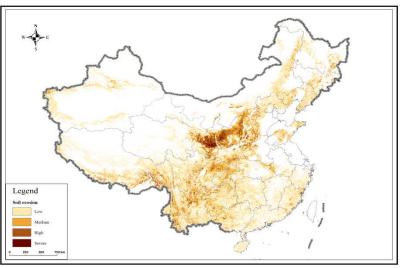

Urbanization regions: Yangtze river delta, Jing-Jin-Ji, Zhujiang river delta, Liaodong peninsula, Shangdong peninsula

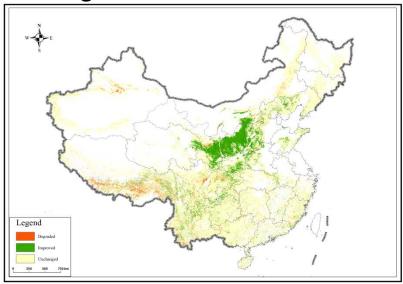

Cropland expansion region: Northeastern plain, DaxinganLing, in Northeastern China, Oasis surroundings in Xingjiang, Coastal regions in northern Jiangsu.

Forest restored regions: Loess
Plateau, the surroundings of Sichuan
Plain, Zhejiang, Guizhou, Chongqing

China ecosystem quality and changes

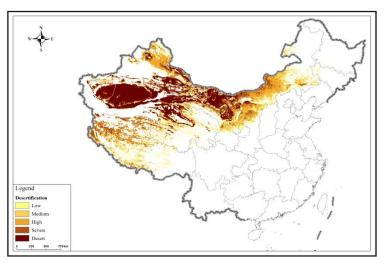
Ecosystem quality and changes in China

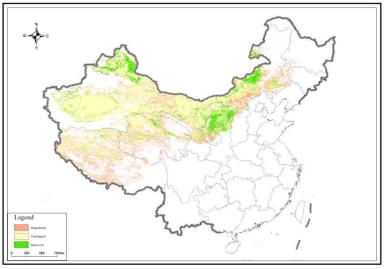



Quality grades	Forests	Grassland
Excellent	5.8%	5.5%
Good	14.8%	12.0%
Fair	35.4%	14.3%
Poor	27.3%	22.7%
Bad	16.8%	45.5%

- 72.3% forest ecosystem quality improved
- 50.3% grassland ecosystem quality improved

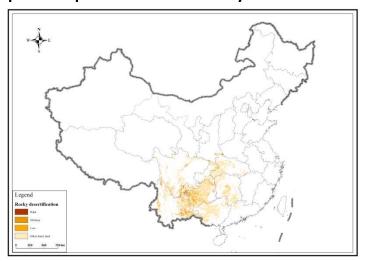
Spatial pattern of soil erosion

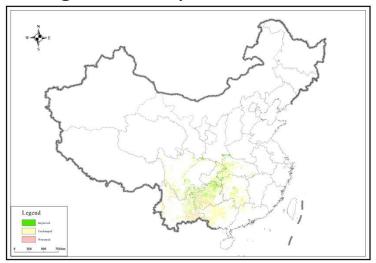

Changes of soil erosion


Soil erosion

- ♦Soil erosion affected 1.73 million km², 18.0% of the land in 2010.
 - mainly distributed in Loess Plateau in North China, mountainous areas in northwest China
- ♦ From 2000 to 2010, soil erosion areas decreased by 10,030 km² (or 5.6 %).
- ♦ Soil erosion exacerbated in some areas.
 - Qionglai-Minshan Mountains, South Tibet Plateau, South Yunnan

Spatial pattern of desertification


Changes of desertification


Desertification

- → Desertification affected 1,820,000 km² (or 19.0%) of the land in 2010.
 - Mainly distributed in Xinjiang, west Inner Mongolia, and the north Tibet Plateau.
- → From 2000 to 2010, desertification land decreased by 11,610 km² (6.0%).
- ♦ Desertification worsened
 - Mainly in middle Inner Mongolia in north China, west Tibet in west China.

Spatial pattern of rocky desertification

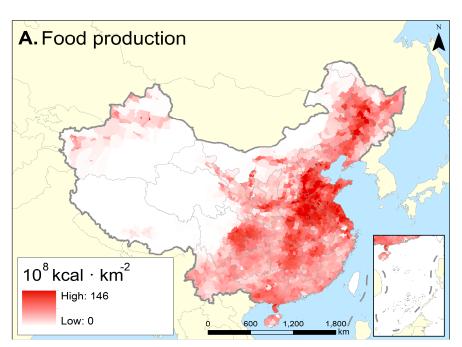
Changes of rocky desertification

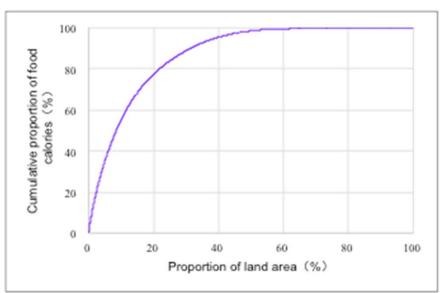
Rocky desertification

- ♦Rocky desertification land affected 95,600 km² of the karst land in south and southwest China in 2010.
- ightharpoonup From 2000 to 2010, rocky desertification land decreased by 4,700 km²(4.7%).
- ♦ Desertification improved in middle and north Guizhou, and northeast Yunnan, but worsened in south Guzhou, and southeast Yunnan.

Wildlife habitat lost

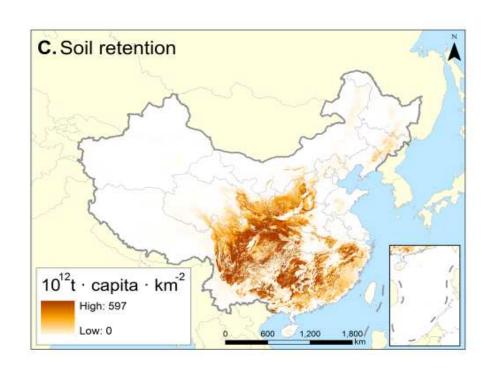
- ♦ Natural forest decreased 10.3%
- ♦ Marsh decreased 3.1%
- ♦ Natural coastal line decreased 10.7%, and coast wetland deceased 14.%

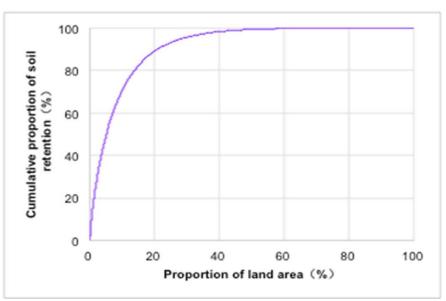


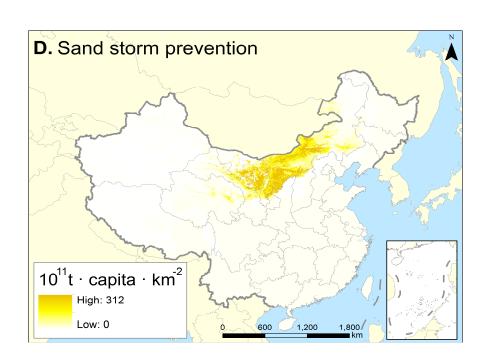

Mainstreaming ecosystem services

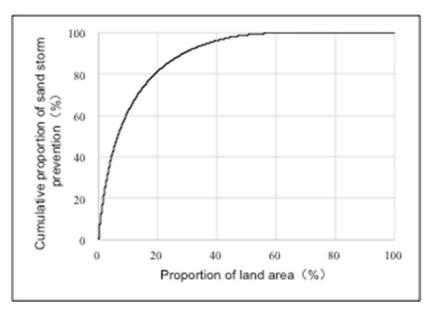
Mapping ecosystem services of China

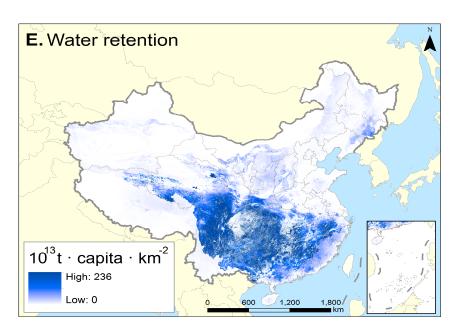
- Food production
- Water retention
- Soil retention
- Sand storm prevention
- Carbon sequestration
- Flood mitigation
- Biodiversity conservation

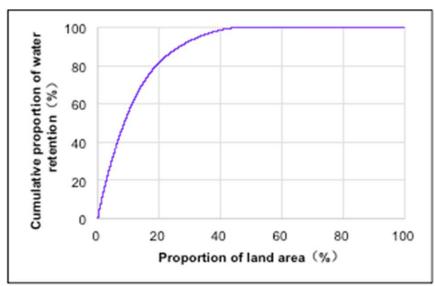

Ecosystem service pattern in China

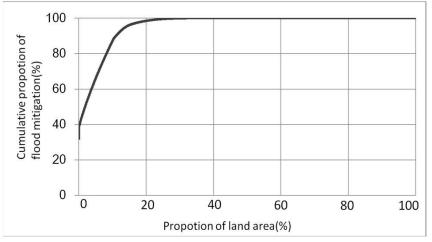


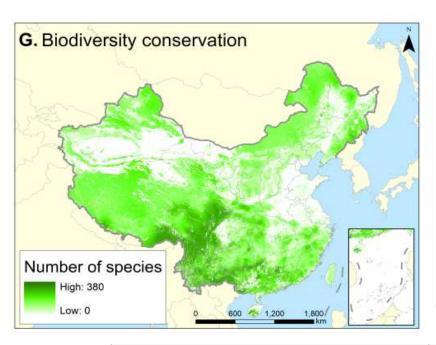

Importance of food production	Area (10 ⁴ km²)	Area proportion (%)
Very high	80.86	8.54
High	94.71	10.01
Medium	121.74	12.86
Normal	649.25	68.59

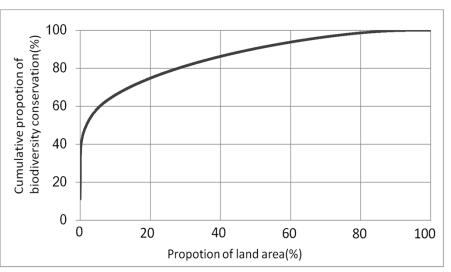

Ecosystem service pattern in China

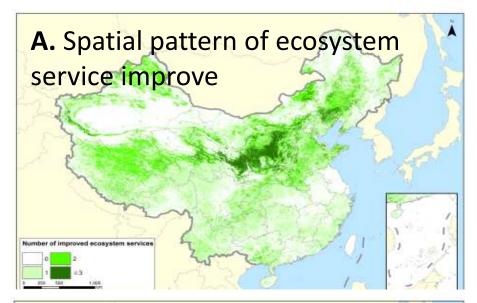


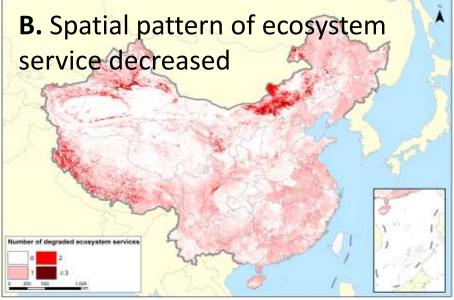

Importance of soil retention	Area (10 ⁴ km²)	Area proportion (%)
Very high	63.82	6.73
High	76.43	8.06
Medium	104.82	11.06
Normal	702.66	74.14

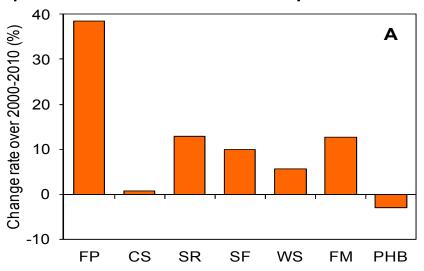

Importance of sand storm prevention	Area (10 ⁴ km²)	Area proportion (%)	
Very high	30.61	3.24	
High	44.08	4.66	
Medium	60.67	6.42	
Normal	809.69	85.68	



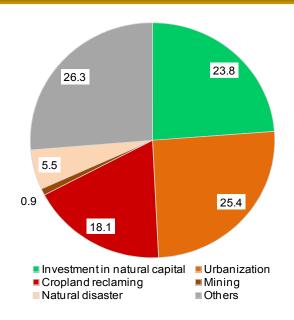

Importance of water retention	Area (10 ⁴ km²)	Area proportion (%)
Very high	151.77	16.04
High	101.57	10.74
Medium	80.17	8.48
Normal	612.49	64.75

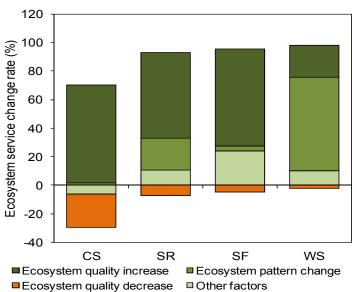

Importance of flood mitigation	Area (10 ⁴ km²)	Area proportion (%)
High	27.43	2.90
Normal	918.37	97.10




Importance of biodiversity conservation	Area (10 ⁴ km ²)	Area proportion (%)
Very high	200.84	21.23
High	107.60	11.37
Medium	288.76	30.52
Normal	348.81	36.87

Changes of ecosystem service pattern in China



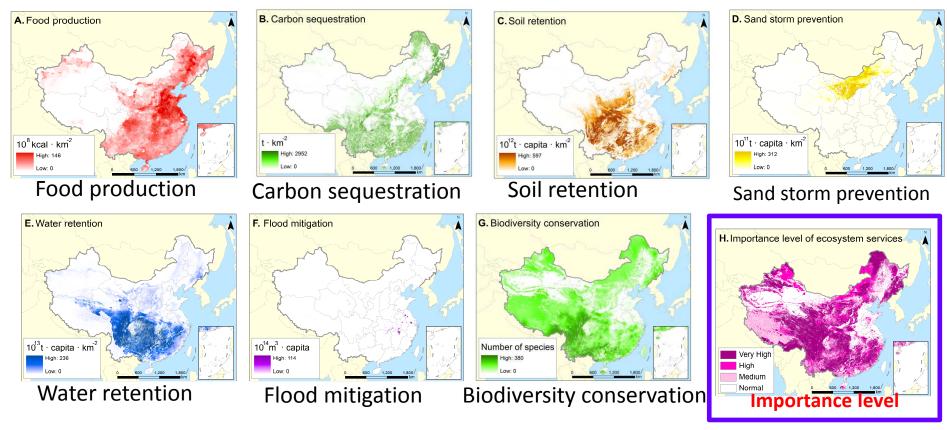

All ecosystem services evaluated increased between 2000 and 2010, with the sole exception of habitat provision for biodiversity.

FP: Food production, CS: Carbon sequestration, SR: Soil retention, SF: Sand fixation, WS: Water supply, FM: Flood mitigation, PHB: provision of habitat for biodiversity.

Driving forces of ecosystem changes in China

Driving forces of ecosystem composition and pattern changes

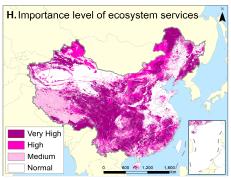
- Urbanization
- Ecosystem conservation and restoration
- Cropland reclaiming
- Mining
- Natural disasters


Driving forces of ecosystem service changes

- Ecosystem pattern changes
- Ecosystem quality changes

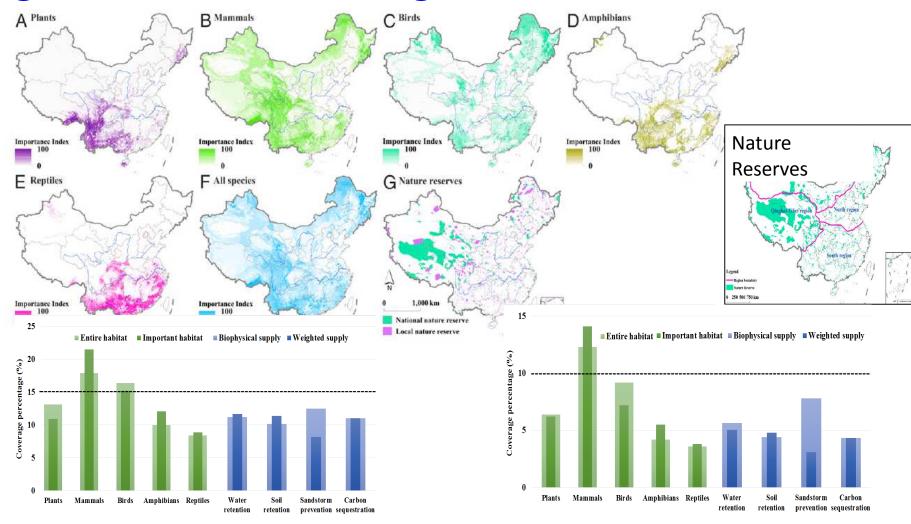
- → Identify crucial areas of ecosystem services
- ★ Figure out conservation gabs
- Initiate and supporting new conservation policy

Ecosystem service mapping


Spatial pattern of ecosystem services

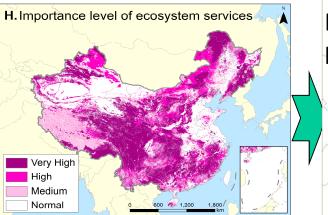
We translated biophysical supply of ecosystem services into importance of service provision by weighting supply by the number of people affected.

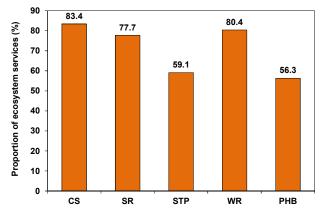
Identify crucial areas of ecosystem services in China



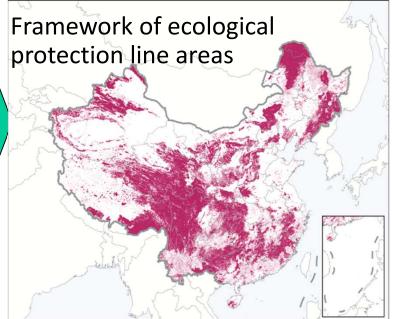
Importance	Land area		Soil retention	Water retention	Sand storm prevention	Biodiversity conservation
	10 ⁴ km	%	%	%	%	%
Very high	343.6	35.8	66.3	60.8	37.3	51.8
High	204.6	21.3	22.0	21.8	27.0	24.1
Medium	161.2	16.8	9.1	11.9	19.2	19.2
Normal	246.8	25.7	2.5	5.4	16.5	4.9

♦ The table showed that about 35% land with high level of ecological importance provide about 60% of ecosystem regulating services.

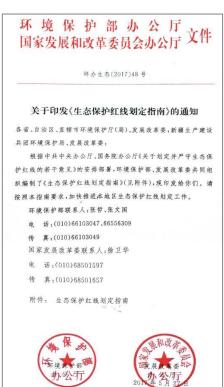

Figure out conservation gabs



Protected Areas not well match with biodiversity and ecosystem service pattern



Ecological Protection Redline



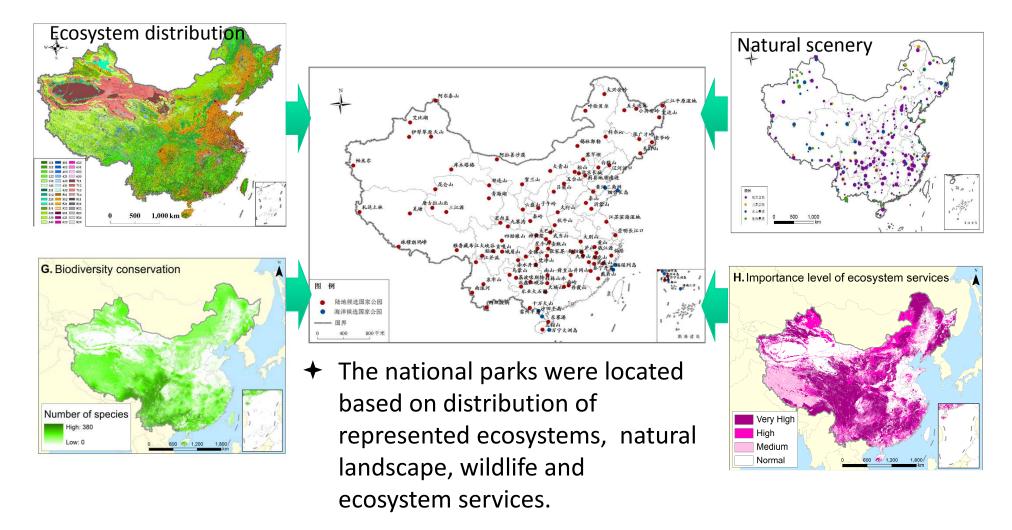
Provision of ecosystem services in EPR Areas (35 %)

→ The very high important areas are planned as Ecological Protection Redline (EPR) to protected strictly for providing ecosystem services and wildlife habitat

◆FPR: 35 % of China

Guideline for ecological redlining by MEP and NDRC

Ecosystem function conservation areas



- 附件: 全国生态功能区划(修编版)
- → 63 areas with critical ecosystem services were identified as Ecosystem function conservation areas (EFCAs) released in 2015 by MEP and CAS.
- → Total 63 EFCAs, 49% of China.

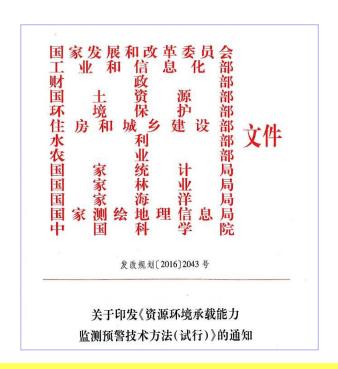
- vvaler reterriori
- Biodiversity conservation
- Soil retention
- Sand fixation
- Flood mitigation

National park system planning

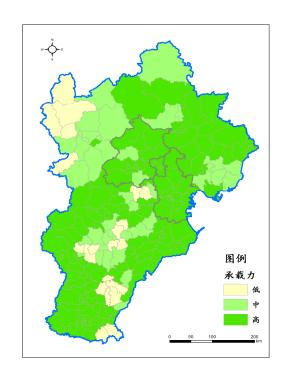
Identify the counties and their leading ecosystem services in key Ecological Function Areas

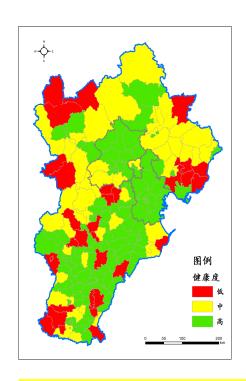
- → The 299 more counties were added in the lists in key ecological function areas, and released by State Council in 2016.
- → Identification of leading ecosystem services of each county in national Key Ecological Function Area by NDRC

Identification of leading ecosystem services for the counties in national Key Ecological Function Area, by NDRC



Year	Budgets (billions RMB)	Benefited Counties
2008	6.0	221
2010	24.9	437
2014	48.3	512
2016	58.7	700


- ★ In order to push conservation in key ecological function areas, Center government launched ecological financial transfer program based on ecosystem service pattern.
- → The budget was increased to 58.7 billion yuan from 6.0 billion yuan in 2008.

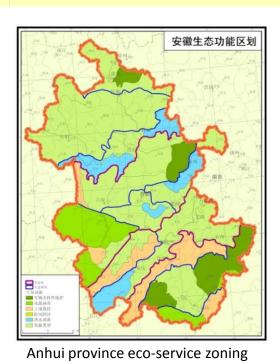

Providing methods and data for ecological carrying capacity evaluation

Methods and data for ecological carrying capacity evaluation, released by 13 ministries

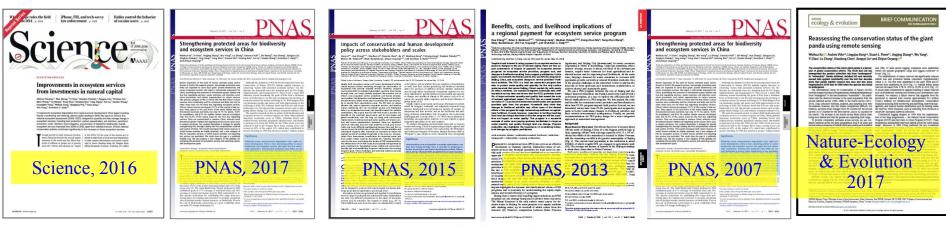
Ecological carrying capacity in Jing-Jin-Ji regiona

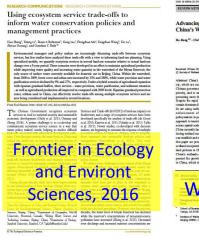
Ecosystem Health index in Jing-Jin-Ji regiona

- → The information and findings in ecosystem service studies have been used in supporting national, regional, provincial conservation policy making and environmental management.
 - ♦ National and provincial ecological redline planning
 - ♦ National key ecological functional region planning
 - ♦ National park planning
 - ♦ National ecological transfer payment
 - ♦ National and provincial natural reserve monitoring
 - ♦ Ecological carrying capacity assessment and early warning
- → Database: http://www.ecosystem.csdb.cn/: 3T



Applications in local governments


- All provinces in China have mapped ecosystem services, and identified local ecosystem function conservation areas.
- Ecosystem service spatial patterns were the basis for urban master planning and regional land use planning in many cities, as Beijing, Guangzhou



★ The papers published on international and Chinese journals,including papers in Science, PNAS, Nature-ecology & evolution, Ecology Letters,Frontier in Ecology and Environt Sciences

Biodiversity losses and conservation responses in the Anthropocene

Christopher N. Johnson, ^{1*} Andrew Balmford, ² Barry W. Brook, ¹ Jessie C. Buettel, ¹ Mauro Galetti, ³ Lei Guangchun, ⁴ Janet M. Wilmshurst^{5,6}

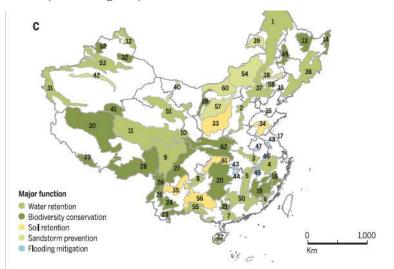


Fig. 3. Responses to biodiversity decline. (A) The cumulative number of islands on which one or more species of invasive vertebrates have been eradicated, since 1950. Data are from the Database of Island Invasive Species Eradications (http://diise.islandconservation.org). Island eradications of invasive predators have been essential in preventing the extinction of species such as the kakapo Strigops habroptius (B) Recovery of the golden lion tamarin in Brazil. Reintroduction of captive-bred animals and restoration of corridors linking forest fragments have resulted in a dramatic increase in the wild population; shown are population estimates and intervention timeline from Associação Mico-Leão-Dourado. (C) China's National Ecosystem Function Zoning scheme, developed by the Ministry of Environment Protection and Chinese Academy of Sciences, to identify areas with key ecosystem functions and where development is restricted to protect those functions (source, www.mep.gov.cn/gkml/hbb/bgg/201511/t20151126_31777/htm).

→ Christopher Johnson, Science, 2017,
 Vol 356(6335),270-275, introduced
 the EFCAs in China

REVIEW

doi:10.1038/nature11157

Securing natural capital and expanding equity to rescale civilization

Paul R. Ehrlich¹, Peter M. Kareiva² & Gretchen C. Daily³

wide range of ecosystems, services and scales. Perhaps most ar China is establishing a new network of 'ecosystem function cor areas' (EFCAs; Fig. 3). EFCAs are being zoned so as to focus cor and restoration in places with high return on investment for pub at the same time, high-impact human activities are being zoned or enhance natural capital values.

These initiatives have dual goals: to harmonize people and securing critical natural capital, and to alleviate poverty. Speci government aims to protect ecosystems and their biodiversity

control, hydropower production efficiency, irrigation supply, more productive agriculture and tourism. In addition, it aims to open non-farm sectors, increase household income and make land-use practices more sustainable in rural areas⁷⁰. Although these initiatives represent a massive cointific and policy undertaking, there is still little undertanding of the local costs of implementation, or their effects on poor and vulnerable populations in or near the target areas. The EFCA model represents a new paradigm for integrating conservation and human development, but for this policy innovation to have wide applicability, it will be important to assess and improve local livelihoods⁷¹.

rates are proving extremely difficult to check. One barrier is that the consumer culture of developed countries represents the "needs and aspirations" of the populations today, but rarely considers the needs

developing countries 2–14 fold!". The importance of the A and T factors in reducing impacts is even greater today than it was when the concept in sets of the control of th

Paul Ehrlich et al, Nature, 2013
 "the EFCA model represents a
 new paradigm for integrating
 conservation and human
 development"

Concluding remarks

- ♦ China has made big efforts to apply ecosystem service evaluation and mapping in conservation policies.
- → Ecosystem service evaluation can be powerful and useful tools to support conservation policy making and innovation.

♦ Opportunity

- ✓ Urban ecological restoration: ecosystem service orientation
- ✓ Coastal management.
- ✓ GEP accounting: for evaluation of ecological compensation, conservation efforts.
- ✓ Marketing mechanism for ecosystem services.

♦ Scientific infrastructure

- ✓ Evaluation, monitoring, modeling of ecosystem services.
- ✓ We need powerful ecosystem service assessment tools and platform.

