Spatial units and ecosystem condition accounts Testing results from South Africa

Virtual Technical Expert Forum on Ecosystem Accounting 23 June 2020

Presenter: Mandy Driver (SANBI)

Spatial units

Anisha Dayaram^{1,2}, Andrew Skowno^{1,3}, Anthony Rebelo¹, Kerry Sink^{1,5}, Jeanne Nel^{4,5}, Nancy Job¹

Overview

- Intro to SA National Ecosystem Classification System (SA-NECS)
- Results from crosswalk of SA-NECS to IUCN Global Ecosystem Typology (GET)
- Results from spatial correspondence between SA-NECS and USGS-Esri World Ecosystems
- 1. South African National Biodiversity Institute (SANBI); 2. University of Cape Town; 3. University of the Witwatersrand; 4. Wageningen Environmental Research; 5. Nelson Mandela University

South African National Ecosystem Classification System (SA-NECS) integrates ecosystem classification and mapping across realms

Realm	Classification system name
Terrestrial	National Vegetation Map
Inland aquatic (freshwater)	Classification system for wetlands and rivers
Estuarine	Ecosystem Classification for South African Estuaries
Marine	Marine Ecosystem Classification

The **coast is a cross-realm zone** that includes elements from all four realms

Approach broadly equivalent across all realms

Ecosystem types mapped based on historical extent (or as close as possible)

SA-NECS hierarchical levels **IUCN-GET** hierarchical levels Level 1: Realm Level 1: Realm Level 2: Biome (or equivalent) Level 2: Biome Alternative pathways Level 3: Bioregion / Level 4: Functional Level 3: Ecosystem Functional Group Ecoregion Cross-Walk test group Alternative pathways Level 4: Biogeographic Level 5: Ecosystem types ecotype Level 5: National ecosystem type Level 6: Local ecosystem types

Results of IUCN-GET crosswalk

- 82% of SA's ecosystem types can be cross-walked to one of the IUCN-GET Ecosystem Functional Groups (L3)
- Looked for best available fit for each national ET
 - Even for those considered a 100% match, the national ET description and EFG description were not necessarily exactly the same

General indication of fit of all South African national ecosystem types within the IUCN GET Ecosystem Functional Groups, for all realms combined

However, results vary by realm

Terrestrial	Rivers	Wetlands	Estuarine	Marine
Overall good	Overall strong	Several challenges e.g.	Overall good	Overall poor cross-walk of SA types
crosswalk of SA	crosswalk of SA	SA floodplain ETs	crosswalk of SA	to GET EFGs:
types to GET	types to GET	crosswalk to	types to GET	Benthic and pelagic coupled in
EFGs.	EFGs	multiple GET EFGs	EFGs	SA, but split in GET
Challenges with		SA valley bottoms		Mosaic types recognised in SA
a few mosaic		don't fit well into		(e.g. mixed shores, mixed
types and some		any GET EFGs		sand/mud/rock substrates) but
forest types.		SA lakes and seeps		not in GET
		fit relatively well		→ SA ETs often crosswalk to multiple
				GET EFGs

Coherence between **South African terrestrial ecosystem types** and USGS-Esri-NC World Ecosystem map product

Only tested for terrestrial realm

- Not a good fit
 - Most SA terrestrial ecosystems types fit into 2 or 3 or even 4 WTE units
- Partly because WTE uses landform (plains/hills/table lands/mountains) high up in the hierarchy
- IUCN-GET is closer to SA approach to conceptualising and classifying ecosystems
- WTE spatial units not useful for terrestrial realm SA but could be useful in data poor contexts
- Results may be different for other realms

Number of World Terrestrial Ecosystem classes shared within an SA terrestrial ecosystem type

Take home messages

- We support the IUCN-GET as the reference classification for SEEA
- Some conceptual differences between SA-NECS and GET:
 - Coupling or splitting benthic and pelagic in marine realm
 - SA-NECS recognises mosaic types in terrestrial and marine realms, GET doesn't
 - Approach to wetland hierarchy is different
- IUCN-GET Level 3 (EFGs) is appropriate for global reporting of ecosystem accounts
 - We will also report at finer level in our national ecosystem accounts
- May be useful to formalise a Global Ecosystem Classification Committee to deal with ongoing refinement?

Ecosystem condition account

• Jeanne Nel^{2,3}, Mandy Driver¹, Aimee Ginsburg¹

- 1. South African National Biodiversity Institute (SANBI); 2. Wageningen Environmental Research;
- 3. Nelson Mandela University

Extent and condition of river ecosystem assets

Based on data from two national assessments of river condition by Department of Water & Sanitation

→ Ecological Condition Index

	Main rivers	Tributaries	All rivers
1999	81.3	84.9	82.8
2011	70.1	75.2	72.2
Change between			
1999 and 2011	-11.2	-9.7	-10.6

Overall

10% decline in
ecological condition
of rivers
1999 - 2011

Rivers are nested in **catchments / river basins**System of primary through to quinary catchments (5 levels)

Average size ~170 km²

We are going to look at

- Selection of indicators
- Reference condition
- Applicability of the three-stage approach
- (Aggregation)
- Take home conclusions

Selection of indicators guided by conceptual framework for assessment of river ecosystem condition

- Based on
 30 years of global river science
- Similar characteristics to the SEEA Ecosystem Condition Typology (ECT)
- Differs from SEEA ECT in that it uses driver-response framing

Kleynhans CJ, Louw MD. 2007. Module A: EcoClassification and EcoStatus determination in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT 329/08.

Reference levels and reference condition

- We always use a reference condition of "natural"
 - i.e. prior to major human modification
- This doesn't mean that all ecosystems should be in natural condition
 - e.g. some rivers are hard-working rivers that are intensively used
- Indicators, sub-indices and index are expressed in terms of their distance from natural

Ecosystem condition categories are useful, from natural through to intensively modified

Ecological category	Description		Natural or near-natural
Α	Unmodified, natural	Unmodified	Moderately modified
В	Largely natural, few modifications	Largely natural with few modifications. A smachange in natural habitats and biota may have taken place but the ecosystem functions are essentially unchanged	Heavily modifiedIntensively modified
С	Moderately-modified	Moderately modified. Loss and change of natural habitat and biota have occurred, but the basic ecosystem functions are still predominantly unchanged Largely modified. A large loss of natural habitat and basic ecosystem functions in handy especially biota and basic ecosystem functions in handy especially especially and basic ecosystem functions are still predominantly unchanged. Loss of natural basic ecosystem functions in handy especially especi	unfor reporting the account
D	Largely-modified	biota and basic ecosystem functions be in handy especially	ISHY ,
Е	Seriously-modified	Loss of naturally come and basic ecosystem function tegories	
F	Critically/Extremely- modified	These Cacobeen modified completely with an complete loss of natural habitat and biota.	

Applicability of the three-stage approach

Our original river ecosystem condition account was constructed and presented in three steps

• So three stages broadly applicable, but nevertheless some challenges

EEA Stage 1: Accounting table for variables

Table 5.3: Ecosystem condition variable account

ECT Class	Va	riables	Ecosystem type					
	Descriptor	Measurement unit	Opening level	Closing level	Change in level			
Physical state	Variable 1							
	Variable 2							
Chemical state	Variable 3							
Compositional state	Variable 4							
	Variable 5							
Structural state	Variable 6							
Functional state	Variable 7							
Landscape level characteristics	Variable 8							

This table was not possible for us to complete...

...for two main reasons

- 1. Variables were not always explicitly quantified
 - Often a proxy was used
 - Often strong reliance on expert knowledge
 - Most river condition assessments (SA and global) use a combination of empirical data AND expert judgement – poses a problem for this table
- 2. Even if the data were available, it usually would not be meaningful to aggregate readings for a single variable across all BSUs or EAs in

an ET

ECT Class	Va	riables	Ecosystem type					
	Descriptor	Measurement unit	Opening level	Closing level	Change in level			
Physical state	Variable 1							
	Variable 2							
Chemical state	Variable 3							
Compositional state	Variable 4							
	Variable 5							
Structural state	Variable 6							
Functional state	Variable 7							
Landscape level	Variable 8							
characteristics								

EEA Stage 2: Accounting table for indicators

Table 5.4: Ecosystem condition indicator account

ECT Class	Indicators			Ecosyste	m type			
		Variable values		Reference le	evel values	Indicator values (rescaled)		
	Descriptor	Opening value	Closing value	Unfavourable	Favourable	Opening value	Closing value	
Physical state	Indicator 1							
	Indicator 2							
Chemical state	Indicator 3							
Compositional state	Indicator 4							
	Indicator 5							
Structural state	Indicator 6							
Functional state	Indicator 7							
Landscape/seascape characteristics	Indicator 8							

This table was also not possible for us to complete...

...for one main reason

- and refer most countries

 ore variable be pragmatic for most countries

 and are variable be pragmatic for most countries

 are

Sub-indices and associated variables (or proxies)

Habitat responses

System drivers

SUB-INDICES	1		<u> </u>
FLOW Changed flow and flood regimes	WATER QUALITY Changed physico-chemical conditions	RIPARIAN HABITAT Changed riparian and river wetland zones due to flow modification and physical changes (assesses structure for biota and functioning)	INSTREAM HABITAT Temporal and spatial change to runs, rapids, riffles, pools (assesses structure for biota and functioning)
VARIABLES or prox	ies for variables		
Presence of urban and agriculture land use, presence of inter basin transfers, weirs, dams, water abstraction data, agricultural return flows, sewage releases.	Extent of algal growth and macrophytes (e.g. water hyacinth). Activities such as mining, cultivation, irrigation (i.e. agricultural return flows), sewage works, urban areas, industries, etc.	Land use/cover quantified 10m, 50m and 100 m from river. Activities such as agriculture, mining, urban areas, inundation etc. Presence and impact of alien invasive woody vegetation.	Land use/cover on erosion, water abstraction data, presence of weirs and dams, presence of habitat modifying introduced biota (e.g. carp, crustacea and molluscs), presence of eutrophication and associated algal growth and macrophyte expansion (e.g. water hyacinth)

EEA Stage 3: Accounting table for sub-indices and ecosystem condition index

Table 5.5: Ecosystem condition index account

ECT Class	Indic	ators	Ecosyst	Ecosystem type		
			Index	value		
	Descriptor	Indicator weight	Opening value	Closing value		
Physical state	Indicator 1					
	Indicator 2					
	Sub-index					
Chemical state	Indicator 3					
Compositional state	Indicator 4					
	Indicator 5					
	Sub-index					
Structural state	Indicator 6					
Functional state	Indicator 7					
Landscape/seascape	Indicator 8					
characteristics				1.1.7		
Ecosystem condition index		This	s table we d	could (mo		

South African river ecosystem functional groups

8 functional groups classified from a combination of 2 hydrological regimes 4 longitudinal zones Mountain Lower foothill Upper foothill Permanent Not permanent Seasonal / Lowland Permanent **Upland streams Episodic** rivers

Aligns well with IUCN-GET ecosystem functional groups

Stage 3 accounting table, aggregated to eight SA river ecosystem functional groups (new table produced for this testing exercise)

			Porr	manent	Non-n	ermanent	Dorman	ent upper	Non no	rmanent	Dorman	ent lower	Non-per	manent	Perm	_					7	
		Condition interval relative to reference condition None (0)/Small (1) Moderate (2) Large (3) Serious (4)/Critical (5) No data None (0)/Small (1) Moderate (2) Large (3) Serious (4)/Critical (F) No data Cluded Cl	mounta	in streams	mounta	ain streams	foo	thills	upper	foothills	foo	othills	lower fo	oothills	rein-							ers
			1999	2011	1999	2011	1999	2011	1999	2011	1999	2011	1999	•					00			11
Class	Sub-index	Condition interval	River	River	River	River	River	River	River	River	River	River	p:					*C C	MIC			÷r
		relative to reference	length (km)	length (km)	length (km)	length (km)	length (km)	length (km)	length (km)	length (km)	length (km)	len					-ah	S1 20				igth (km)
		None (0)/Small (1)	R11)	0 673	2 21	1 265	9 673	7 996	/ 58/	/KIII)	(KIII)			-2401	5	c C	u_{III}	0/1		آه	40,579	34.810
		Moderate (2)	20	6 283	3 3	18 95	3,073	3 3 873	1 -	'			iba:	Jaco	~m	es	ے مرک	1901	ا ا	0	24,634	21,043
Physico-	Water	Large (3)	3	6 12	5 2	2 58	750	1 1 7	 			Lial	1110	. he	COM	+	o alle	اعمد	0	0	5,518	11,667
chemistry	quality	Serious (4)/Critical (5)	1	5 10	9	5 9	75.	4			اأبيند	gna.	~~?	at De	, 1- C	$\cap U^{U}$	30	17	0	0	1,943	3,439
		condition interval relative to reference condition None (0)/Small (1) Moderate (2) Large (3) Serious (4)/Critical (5) No data None (0)/Small (1) Moderate (2) Large (3) Serious (4)/Critical (F) No data	-	0 57	7	0	—			-+ in	OLA.	40	$\gamma \gamma $	<i>,</i>	(Sps	143	0	332	3.637	3,637	3,637	5,352
		None (0)/Small (1)	32	7 389	9 ^	. 1			n'	Or	+	his ''		3562	-,0/4	2,308	909	117	0	0	22,471	22,421
		Moderate (2)	49	8 /1*				:~Ye	X1 '		es, c		crea	,,.u9 _,.u9	4,898	5,323	270	719	0	0	32,951	29,328
	Riparian	Large (3)	25	_			-nd	1110	- m	typ	_ v	$^{\prime}$ 4 $^{\prime}$.,529	1,731	1,584	2,386	213	215	0	0	14,164	15,420
	nabitat	Serious (4)/Critical /F'				. 605	9110	~1C	terr	(as ai	الانء,	190	398	626	696	24	32	0	0	3,088	4,755
C+		No data			ind	11CE2	Ω(O51-	, ·	oas'	ر ح ر	υ 67	0	207	0	68	0	332	3,637	3,637	3,637	4,388
Structure				cub	-1110	-00	NE	٠.	incl	الادر_	14,030	9,425	6,292	5,058	5,049	2,493	954	491	0	0	39,738	28,491
		v •	$V l_{\Omega_{-}}$	Sur	0	Mai	۱.	$^{\prime}$ O $_{II}$	باددر_	1,929	10,519	9 10,938	3,308	3,144	4,435	4,423	432	506	0	0	26,188	26,612
	Neve	31. 40g	0,,,,		too	.:.	u g	مد- م	323	817	7 2,593	3 5,768	350	1,288	905	3,260	8	76	0	0	5,446	13,620
HO	<i>™</i> ~ .	acludes	-ve	ale	- 4	natic		568	67	230	538	8 1,483	67	320	392	538	23	11	0	0	1,301	3,200
7 ,,	NO I	ncis at	ner c		γ_{OY}	110 <u> </u>	(24	C	52	2 (0 67	0	207	0	68	0	332	3,637	3,637	3,637	4,388
	1100	an as t		4e 11	,, •	173	8,470	5,493	2,997	3,020	12,633	3 7,701	5,283	4,638	2,882	1,565	948	478	0	0	34,084	23,538
		30011	$^{\prime}C/U$	u =	17	77 130	3,773	4,381	2,681	1,969	8,183	3 7,527	3,592	3,061	3,674	2,711	417	389	0	0	22,814	20,499
Functi	72 -	cn't "	,	233	3 5	95	1,71	7 2,907	684	1,254	4,34	1 6,704	667	1,632	2,738	3,317	10	204	0	0	10,328	16,345
		10621, -	3	4 66	5 2	22 29	599	1,479	265	272	2 2,522	2 5,240	476	432	1,487	3,045	41	13	0	0	5,447	10,576
	- 1t (0 57	7	0 9	(299		112	2 (0 509	0	255	0	143	0	332	3,637	3,637	3,637	5,352
	•	Tatarai, seriii matarai	27	4 505 2 417	5 29 7 11	97 177 11 141	10,312	2 5,540 2 5.827	4,742	2,930	16,343	7,100	7,340	3,829	5,373	1,832	1,290	528 792	0	0	46,541	22,441
Ecologica	condition	Moderately modified Heavily modified	27	5 214	/ 11	11 141	3,762 412	2 5,827	1,609 209	2,467	7 9,537 0 1,422	7 12,637 2 6.627	2,283 293	4,239 1,737	4,640 407	5,263 3,326	101	792 80	0	0	22,315 2,791	31,782 15,960
In	dex	modified	1			6 11		,			- /	-,-	102		361	3,326	23	17	0	0	1,026	2,492
		No data		0 0)	0 0	/:		07) () 1	0 1,317	102	0	0	J01	0	0	3,637	3,637	3,637	3,637
		110 data		<u> </u>	<u>′1 </u>	<u> </u>		<u>, </u>		1	<u> </u>	0	U	U	U	U	٥	J	3,037	3,037	3,037	3,037

A possible alternative format for Table 3, from our original accounts

- Contains more information on increases and decreases
- Presented here for all rivers, but could have a set for each ecosystem type
- Only sub-indices are shown here but this table could be extended to show the Ecological Condition Index

		Degree of mod	lification fro	om natural		
Kilometres	None/ small	Moderate	Large	Serious/ Critical	No Data	Total
FLOW						
Opening stock 1999	34 084	22 814	10 328	5 447	3 637	76 310
Opening stock as a % total river length	45	30	14	7	5	100
Increase/decreases	-10 546	-2 316	6 017	5 129	1 715	
Increases/decreases as % opening stock	-31	-10	58	94	47	
Opening stock 2011	23 538	20 499	16 345	10 576	5 352	76 310
Opening stock as a % total river length	31	27	21	14	7	100
WATER QUALITY						
Opening stock 1999	40 579	24 634	5 518	1 943	3 637	76 310
Opening stock as a % total river length	53	32	7	3	5	100
Increase/decreases	-5 769	-3 591	6 149	1 496	1 715	
Increases/decreases as % opening stock	-14	-15	111	77	47	
Opening stock 2011	34 810	21 043	11 667	3 439	5 352	76 310
Opening stock as a % total river length	46	28	15	5	7	100
STREAM BANK/RIPARIAN HABITAT						
Opening stock 1999	22 469	32 951	14 164	3 088	3 639	76 310
Opening stock as a % total river length	29	43	19	4	5	100
Increase/decreases	-50	-3 612	1 255	1 667	740	
Increases/decreases as % opening stock		-11	9	54	20	
Opening stock 2011	22 418	29 339	15 420	4 755	4 379	76 310
Opening stock as a % total river length	29	38	20	6	6	100
INSTREAM HABITAT						
Opening stock 1999	39 736	26 188	5 446	1 301	3 639	76 310
Opening stock as a % total river length	52	34	7	2	5	100
Increase/decreases	-11 245	426	8 180	1 898	740	
Increases/decreases as % opening stock	-28	2	150	146	6 840	
Opening stock 2011	28 491	26 615	13 626	3 200	4 379	76 310
Opening stock as a % total river length	37	35	18	4	6	100

Take-homes from condition account test

- Selection of indicators
 - The Ecosystem Condition Typology is a useful starting point
 - But even better to have a conceptual framework to guide selection of indicators for the realm concerned
- A reference condition of natural works well (and doesn't imply that all ecosystems should be natural)
 - Condition categories from natural through to intensively modified are useful
 - Measurements can be scaled according to distance from natural
- Support the staged approach, but suggest simplifying to two stages
 - Stage 1: Account for indicators and/or sub-indices
 - Indicators on their own leave people hanging
 - Stage 2: Ecosystem condition index account
- Tables of variables are not the same as a variable account
 - Useful for organizing raw data systematically, but unlikely to be meaningful in themselves
 - A step in preparing accounts-ready data
 - Not meaningful to aggregate individual variables spatially across a whole ET