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A big data and machine learning approach for
monitoring the condition of ecosystems

Abstract—Ecosystems are highly valuable as a source of goods
and services and as a heritage for future generations. Knowing
their condition is extremely important for all management and
conservation activities and public policies. Until now, the eval-
uation of ecosystem condition has been unsatisfactory and thus
lacks practical implementation for most countries. We propose
that ecosystem integrity is a useful concept that can be used to
evaluate ecosystem condition through data science and machine
learning. Based on a three tier (contextual, instrumental and
hidden) model and a Bayesian network approach, we used field
and remote sensing data to estimate the integrity of terrestrial
ecosystems per 250 m in Mexico.

I. INTRODUCTION

CURRENTLY, there is a growing capacity worldwide to
produce large amounts of environmental data (probably

on the ranks of Big data), and the growing technological
development to obtain and analyze them allow to tackle human
and ecological problems under new paradigms[1]. Today it is
possible to conceive spatially continuous maps that can be
updated in almost “real time”, depending on the frequency of
new available information[2]. One of such interests focus on
Ecosystems because, despite being regarded as an externality
to the economy, they are highly valuable as a source of goods
and services and as a heritage for future generations. In par-
ticular, there is growing interest in monitoring their condition
as a basis for all management and conservation activities and
public policies. Mexico has produced big datasets, such as the
National Forest and Soil Inventory (INFyS, for its Spanish
acronym), the National Information System on Biodiversity
(SNIB, for its Spanish acronym) the National System of
Biodiversity Monitoring (SNMB, for its Spanish acronym).
These, in combination with publicly available satellite imagery
(e.g. MODIS, Landsat, Sentinel 1 and 2 collections) may
progressively be used to assess the natural condition of the
country[3].

In contrast to combining variables in ad hoc indices as has
been done before[4][5], we capitalize on the large data-sets
described above and machine learning technologies to produce
an ecosystem integrity estimate. We trained a Bayesian net-
work[6] to predict the value of an integrity index that relates
to the condition an environmental unit might have at a point
in time using a conceptual model and learning algorithms.
The result is strongly data driven and science based on an
explicit concept, which makes it both innovative and highly
reproducible, a relevant contribution in support of evidence
based decision-making.

II. THE THREE TIER MODEL FOR ECOSYSTEM INTEGRITY

Ecosystem integrity emerges from the driving of both nat-
ural and anthropogenic processes which operate concurrently

over the ecosystem. However, in order to enhance clarity we
follow an analytical strategy of separating these processes
taking advantage of the modularity of Bayesian network that
allows for an object-oriented approach [7]. Thus, we developed
a three tier model that accounts for the condition in which the
ecosystem is, based on a referent of non-human intervention.
In this model, observations obtained by sampling in the field
or through remote sensing, are allocated to the “instrumental
tier” (Figure 1). We assume that the actual values of the
variables in this tier are a result of the simultaneous effect of
two components: a) the physical and chemical conditions of
existence (also conditioning the evolutionary lineages present
in the area) and b) the current condition of the ecosystem.
The former constitutes a “contextual tier” in our model and
the latter a “hidden tier”. The contextual tier accounts for
the physicochemical conditions within which the ranges of
values of the variables from the instrumental layer express
themselves (conditioning expected values). The hidden layer
defines the level of ecosystem integrity based on the values
of the instrumental and contextual layer (expected outcome of
human intervention).

Human intervention is added as an extra tier that allows
the coupling with key drivers that can be hypothesized are
preconditions acting over an environmental unit, that are likely
to affect ecosystem integrity (not shown in Figure 1).

Fig. 1. The three tier conceptual model of ecosystem integrity.

III. METHODS

A. Contextual tier

Data on precipitation, biotemperature and potential evapo-
transpiration ratio were used to assess physicochemical con-
ditions and calculate thirty one life zones for the Mexico ac-
cording to Holdridge (1967), using the nomenclature proposed
by the International Institute for Applied Systems Analysis.
Data from a digital elevation model was included in order to
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account for the physical conditions imposed by elevation and
local hilliness.

B. Instrumental tier

1) Field data: Field data were obtained from INFyS, which
Mexico has been conducted since 2004 over a grid of more
than 22,000 conglomerates. These are sampled iteratively over
a cycle of five years. The grid is evenly spaced depending
on the type of ecosystem in question, 5 km for forests and
25 km for arid and semi-arid ecosystems. INFyS includes
the sampling of over 150 variables. From these, we selected
ten to produce wall-to-wall cartography at 250 m by means
of machine learning based spatiotemporal interpolation. To
achieve this, the In Situ INFyS data was associated to several
covariates, which are available continuously over Mexico. A
first batch of these were remote sensing derived, yearly com-
posites of Modis Vegetation Indices 16-Day L3 Global at 250
m (MOD13Q1 and MYD13Q1) were produced: P0.05, P0.20,
mean, P0.80, P0.95 mean of the dry season1 and mean of the
wet season for both NDVI and EVI indices. The second batch
of covariates are climatic and topographic: high resolution (90
m) bioclimatic surfaces[8] and a digital elevation model (mean
elevation and range).

INFyS variables which were continuous in nature: number
of trees and shurbs (diameter¿7.5 cm) per ha, average tree
height, standard deviation of tree heights, average tree crown
diameter, standard deviation of tree crowns diameter, average
stem height, standard deviation of stem heights, average di-
ameter at breast height and standard deviation of diameters
at breast height, were used to fit XGBoost[9] regression
models. Variables which were discrete: presence/absence of
tree pests, presence/absence of standing dead trees, were used
to fit Random Forest classification models[10]. Once these
predictive models where trained and tuned, they where used
to predict on the whole of Mexico to produce the desired
cartography.

2) Remote sensing: Additionally, as a proxy for vegetation
function on the ground, Modis Net Photosynthesis products
(MOD17A2 and MYD17A2) where used. The complete avail-
able time series of this product was downloaded and then
yearly composites where created: mean net photosynthesis,
standard deviation of net photosynthesis and mean of the wet
and dry seasons.

C. MAD-MEX land cover

Medium resolution (30 m) MAD-MEX[11] (Monitoring Ac-
tivity Data – Mexico) land cover classification maps were used
to generate coarse resolution proportion of cover maps at 250
m. First, the original MAD-MEX scheme was aggregated to
IPCC classes, except that forest, rainforest and shrubland were
separated and grassland and agriculture aggregated. Then,
these 30 m resolution classification maps were overlaid on
a 250 m grid and the proportion of each class contained on
each 250 m pixel calculated (Figure 2).
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Fig. 2. Example of spatial overlay: 30 m raster on 1 km grid.

The percentage of a pixel covered by forest, rainforest,
shrubland were considered as instrumental variables and bare-
ground, grassland or agriculture and human settlements, as
preconditions that affect ecosystem integrity.

IV. BAYESIAN NETWORK MODELING

All variables were automatically imported to Netica as
continuous nodes then discretized to 10 levels, based on
the particular histogram pattern of each node. A Bayesian
network model was used to describe the influence among the
variables as well as to provide estimates of the conditional
probability matrices. Bayesian networks are represented by
an directed acyclic graph with variables as nodes linked by
arrows pointing in the direction of the influence (Figure 3).
The model further specifies the dependencies by means of
matrices of conditional probability that account for the set of
dependencies the variables have, one matrix per node, which
completes the quantitative specification of the model.

Fig. 3. Generic Ecosystem Integrity Bayesian network.

For network structure we followed a mixed strategy. First,
we applied a Tree Augmented Naı̈ve algorithm (TAN)[12] to
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help on discovering co-depencency pattern in the data set,
then we superimposed the three tier structure (contextual and
hidden layers → instrumental layer) plus preconditioning so as
to produce the largest correlation with the ecosystem condition
primes. All Conditional probabilities tables were obtained
using the Counting-Learning algorithm embedded in Netica.

In order to prime the hidden tier we prepared a “Delta
Primary Vegetation” (DeltaPV) map, based on the hemeroby
concept [13], that estimates the amount of transformation that
vegetation shows by comparing current land cover obtained
from classified satellite imagery of the year 2008 versus
expected “primary vegetation”, as judged by expert opinion.
The qualitative amount of change was evaluated following the
criteria showed in Figure 4.

Fig. 4. DeltaPV: Deviation between primary and current vegetation based on
INEGI vegetation series IV, as judge by expert opinion.

V. BAYESIAN NETWORK PREDICTION

The final Bayesian network may be used to estimate the
level of Ecosystem integrity for any year where the variables
of the three tier model are available. The original Bayesian
network was trained on data comprising the year 2008 but may
be used to extrapolate to, for example, the year 2004 (Figure
5) or to any recent year. It should be noted that even though the
Bayesian network in question is trained in classification mode
(DeltaPV is an ordinal variable), the expected value along its
numeric range can be calculated, which is what we refer to
by the Ecosystem Integrity Index.

A Bayesian network can be query in multiple ways, which
delivers different ”reasoning types” (mainly diagnostic, causal
or intercausal) [7]. In a causal reasoning, for instance we could
ascertain the values of all nodes that correspond to a prime
condition to yield reference values.
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Fig. 5. Ecosystem integrity index projected to 2018, using the model trained
on 2008 data.
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