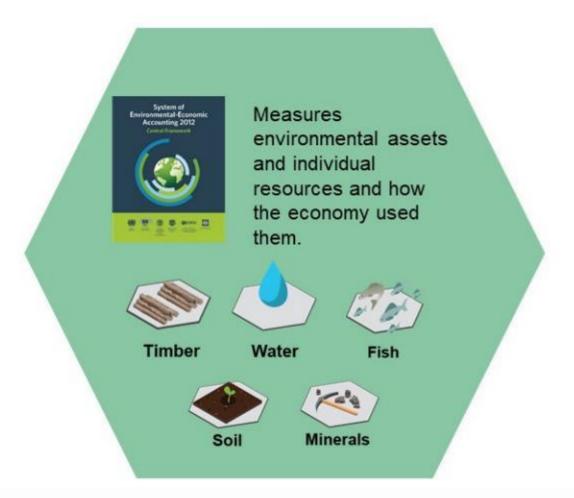


Informing Climate Change and Sustainable Development Policies with Integrated Data

BILBAO. SPAIN 10-14 JUNE 2024 #UNBigData2024

Ecosystem services in the SEEA Ecosystem Accounting

Marko Javorsek **UN Statistics Division**


Outline

- The SEEA and the bigger picture
- SEEA Ecosystem Accounting conceptual framework and accounts
- What is the ecosystem services flow accounts
- Ecosystem services reference list
- Biophysical modelling of ecosystem services
- Materials in support of SEEA implementation
- Ecosystem services flow accounts: example from South Africa

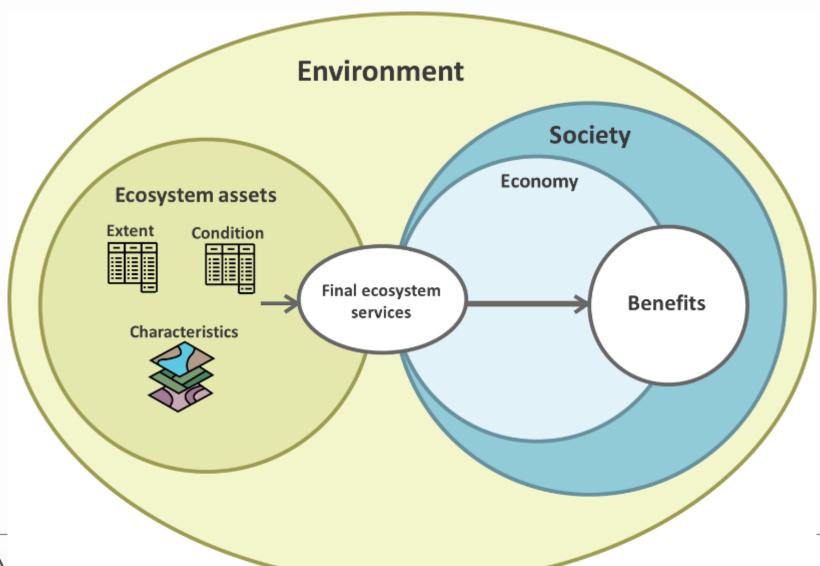
SEEA Central Framework and SEEA Ecosystem Accounting

- Two sides of the same coin

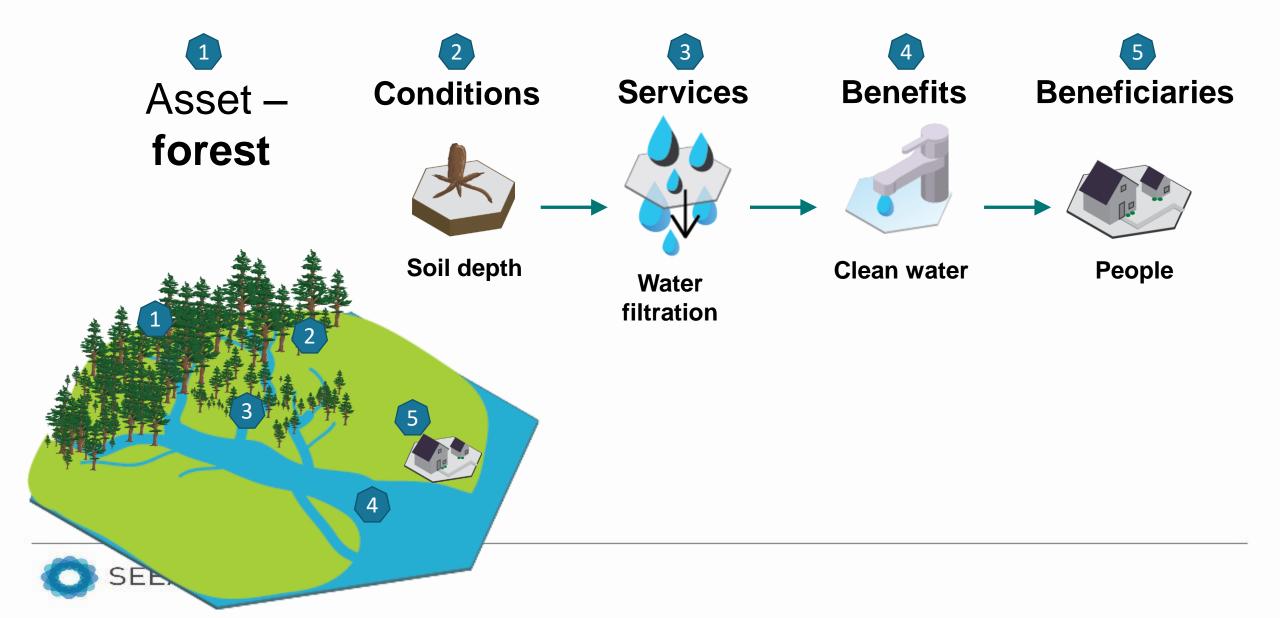
Measures ecosystems and the services they provide to economic and human activity.

Forests

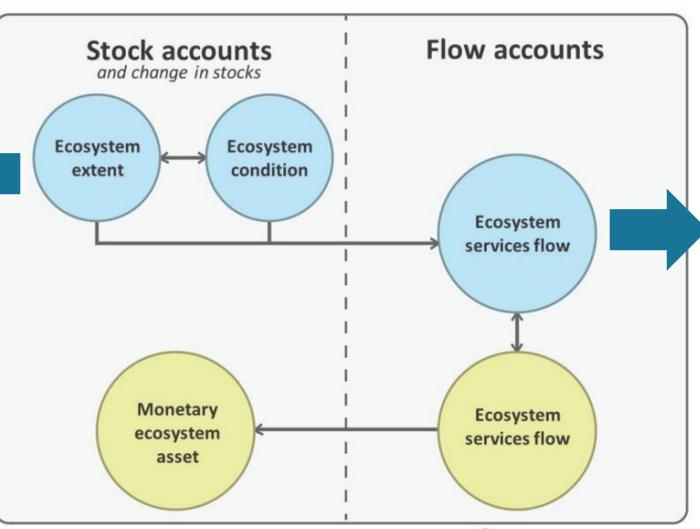
Rivers


Coral reef

Wetlands

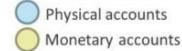


SEEA Ecosystem Accounting - conceptual framework



SEEA EA Framework – Illustrative Example

SEEA Ecosystem Accounting – core accounts and the GBF


extent
account
provides the
basis for
Indicator
A.2 Extent
of natural
ecosystems

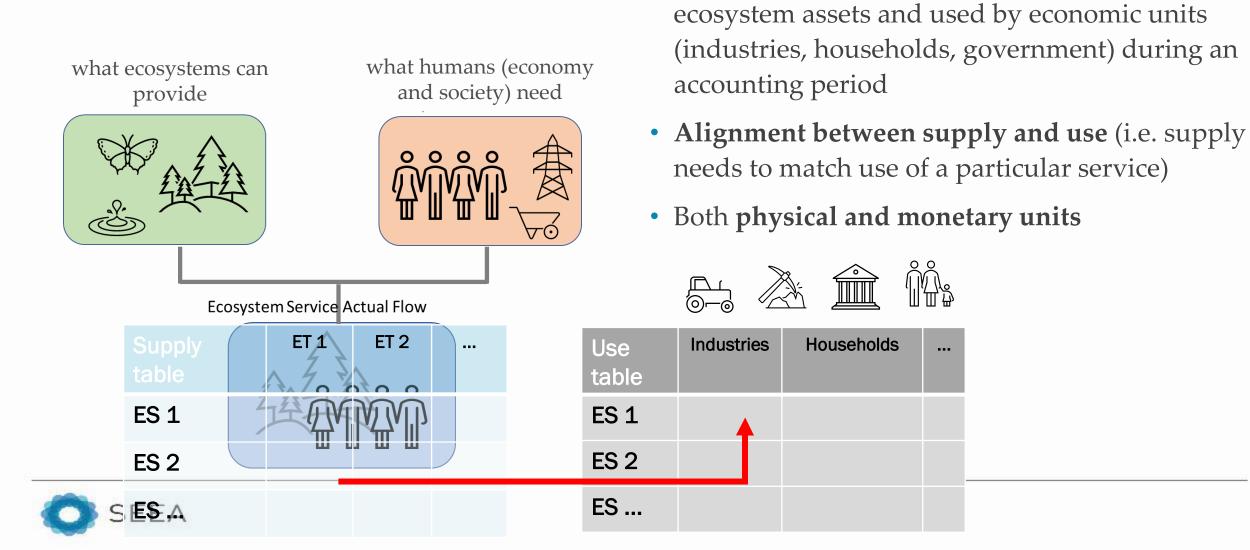

Ecosystem services account (physical) provides the basis for **Indicator B.1 Services** from ecosystems

Figure 2.2 from SEEA Ecosystem Accounting

Ecosystem services flow account

• Flows of ecosystem services supplied by

Ecosystem services

- SEEA EA includes a reference list of ecosystem services
- Final and intermediate ES

- Provisioning:
 - > Biomass
 - Grazed biomass
 - Livestock
 - Aquaculture
 - Wood
 - Wild fish + other
 - Wild animals, plants+ other
 - > Genetic material
 - > Water supply
- Cultural:
 - > Recreation-related
 - > Visual amenity
 - > Education, scientific and research
 - Spiritual, artistic and symbolic services
- Other ES
- Non-use

- Regulating and maintenance services
 - > Global climate regulation
 - > Rainfall pattern
 - > Local (micro and meso) climate regulation
 - > Air filtration
 - > Soil quality regulation
 - > Soil and sediment retention
 - > Solid waste remediation
 - > Water purification
 - > Water flow regulation
 - > Flood control
 - > Storm mitigation
 - > Noise attenuation
 - > Pollination
 - > Biological control
 - > Nursery population & habitat maintenance

Biophysical modelling of ecosystem services

- What is biophysical modelling?
 - > Quantitative estimation of biophysical phenomena or processes that are difficult to fully observe directly
 - > Biophysical models are very useful for understanding ecosystem service supply
- Why do we need biophysical modelling?
 - > Data needed for ecosystem accounts not usually captured in regular data sources
 - > Measuring ecosystem services directly is often difficult or costly to measure in situ
 - > Data may only be available for specific locations
- Many modelling techniques are available, including look-up tables, spatial interpolation, geostatistical models, dynamic systems, etc.
- Many platforms are available for modelling ecosystem services, including AIRES, InVEST, INCA/ESTIMAP, etc.

Materials in support of implementation of the SEEA

Guidelines and reports

- Biophysical guidelines
- Monetary valuation
- Policy scenario analysis

E-Learning (in various language options)

- SEEA CF, including SEEA-Energy and SEEA-Water
- SEEA EA
- NCA Policy uptake

Data

ARIES for SEEA

Policy applications

- Linkages of global indicators with SEEA
- How NCA contributes to sustainability policies

Ecosystem services account: Example from South Africa

- Output of the EU-funded NCAVES project
- Modelled 11 different ES for 2005 and 2011 for Kwazulu-Natal (KZN) province
- Physical & monetary units

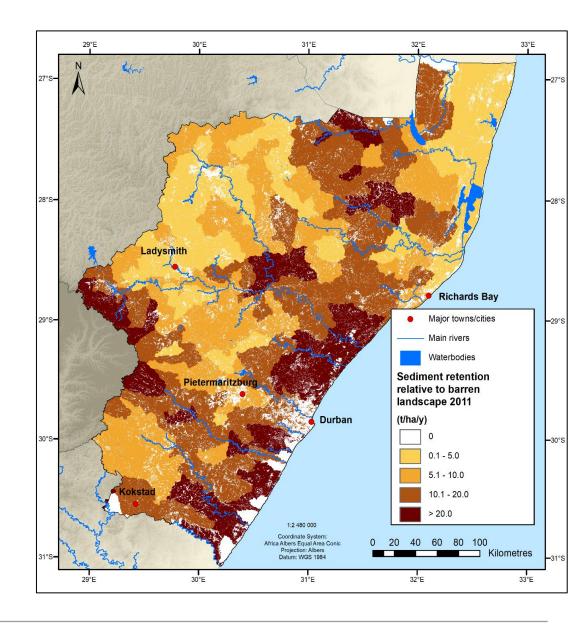
Towards a method for accounting for ecosystem services and asset value:

Pilot accounts for KwaZulu-Natal

South Africa, 2005-2011

Updated Final Report January 2021

Turpie, J.K., Letley, G., Schmidt, K., Weiss, J., O'Farrell, P. and Jewitt, D.



ecosystems per subcatchment area in 2011 (tonnes per ha per year) relative to a barren catchment

Picture representing:

sediment retention by

Estimated average

Ecosystem services account: Example from South Africa (2)

• After integration, physical supply and use tables (and monetary SUTs + monetary asset account)

Table 5.1. Total biophysical supply per ecosystem type 2005

Resource	Freshwater ecosystems	Grassland	Indian Ocean Coastal Belt	Savanna	Forests	Estuaries	Cultivated	Urban green space	Total
Wood products (m³)	3 523	695 638	235 125	787 294	267 047	169			1 988 796
Non-wood products (tonnes)	834	46 494	11 489	34 952	2 911	38			96 718
Livestock production (LSU)	1 716	684 698	52 162	289 663	2 010	340			1 030 589
Crop production (tonnes)							43 305 781		43 305 781
Experiential value (R millions)	14	237	179	218	55	24	85	885	1 698
Carbon storage (Tg C)	5	512	61	348	33	0	279		1 237
Pollination (R millions)	0	12	6	31	2	0			51
Flow regulation (million m³)	78	3 315	421	2 198	634	36			6 682
Flood attenuation (R millions)								31	31
Sediment retention (million tonnes)	2	45	6	27	18	2			99
Water quality amelioration (tonnes P)	-	3 829	525	5 394	97	6			9 850

Source: Turpie et al. 2021

THANK YOU

seea@un.org // https://seea.un.org/

