SDG 15.3 Measuring Land Degradation (Neutrality)

A/Prof Neville D. Crossman UNCCD Consultant

University of Adelaide

neville.crossman@gmail.com www.nevillecrossman.com

Why land degradation?

- Degraded lands costs \$100s billion annually (lost opportunities and restoration costs)
- Degradation of land (ecosystems) is a core concern within SDG 15 Life on Land
- Measuring land degradation is essential to understanding and measuring ecosystem capacity to supply ecosystem services
- Degraded land compromises the capacity of ecosystems to supply services

Bad degradation = few services

SDG Target 15.3: Land Degradation Neutrality

SDG Target 15.3:

"By 2030, combat desertification, restore degraded land and soil, including land affected by desertification, drought and floods, and strive to achieve a land-degradation neutral world"

SDG Indicator 15.3.1:

Proportion of land that is degraded over total land area.

United Nations Corvention to Combat Desertification

Conceptual framework

Source: Cowie, B. J. Orr, V. M. Castillo Sanchez, P. Chasek, N. D. Crossman, A. Erlewein, G. Louwagie, M. Maron, G. I. Metternicht, S. Minelli, A. E. Tengberg, S. Walter, and S. Welton. 2018. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environmental Science & Policy **79**:25-35.

Key principles of LDN – most relevant to SEEA-EEA

Table 1

Principles underpinning the implementation of LDN.

- Maintain or enhance land-based natural capital.
- 2 Protect the rights of vulnerable and marginalised land users.
- 3 Set national LDN targets based on national circumstances.
- 4 For neutrality, the LDN target equals (is the same as) the baseline.
- 5 Neutrality is the minimum objective: countries may elect to set a more ambitious target.
- 6 Integrate planning and implementation of LDN into existing land use planning processes.
- 7 Counterbalance anticipated losses in land-based natural capital with interventions to reverse degradation, to achieve neutrality.
- 8 Manage counterbalancing at the same scale as land use planning.
- 9 Counterbalance "like for like" (within the same land type).
- 10 Seek solutions that provide multiple environmental, economic and social benefits, and minimise trade-offs.
- 11 Base land use decisions on multi-variable assessments, considering land potential, land condition, resilience, social, cultural and economic factors.
- 12 Apply the response hierarchy in devising interventions for LDN: Avoid > Reduce > Reverse land degradation.
- 13 Apply a participatory process: include stakeholders, especially land users, in designing, implementing and monitoring interventions to achieve LDN.
- 14 Reinforce responsible governance: protect human rights, including tenure rights; develop a review mechanism; and ensure accountability and transparency.
- 15 Monitor using the three UNCCD land-based global indicators: land cover, land productivity (net primary productivity, NPP) and carbon stocks (soil organic carbon, SOC).
- 16 Use the "one-out, all-out" approach to interpret the result of these three global indicators.
- 17 Use additional national and sub-national indicators to aid interpretation and to fill gaps for ecosystem services not covered by the three global indicators
- 18 Apply local knowledge and data to validate and interpret monitoring data.
- 19 Apply a continuous learning approach: anticipate, plan, track, interpret, review, adjust, create the next plan

Source: Cowie, B. J. Orr, V. M. Castillo Sanchez, P. Chasek, N. D. Crossman, A. Erlewein, G. Louwagie, M. Maron, G. I. Metternicht, S. Minelli, A. E. Tengberg, S. Walter, and S. Welton. 2018. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environmental Science & Policy **79**:25-35.

ו balance: Policy **79**:25-35. _ouwagie, ∞ŏ G Land Science Erlewein, 2018. M. Maron, G. I. Metternicht, S. Minelli, A. E. Tengberg, S. Walter, and S. Welton. 20 The scientific conceptual framework for Land Degradation Neutrality.Environmental Ŕ Crossman, с. ż Chasek, ۳. Sanchez, Castillo ⊇່ທ່ > , E O ഫ് Cowie, Source:

Three sub-indicators for degraded land

Proportion of degraded land is derived from the three indicators:

- 1. Land Cover change (LC change) 2000-15
- 2. Land Productivity Dynamics (LPD) 2000-13
- 3. Change in Soil Organic Carbon stocks (SOC change) 2000-15

State of each indicator is classified as degradation (or not).

UNCCD has just completed delivery of data to countries using global datasets

The indicators report for 2000-2015 = baseline land degradation

One out all out rule

- A location is considered degraded if at least one of the three indicators shows a negative change (i.e. is degraded).
- This is the 'one out, all out' rule (Cowie et al 2018).
- A precautionary measure stability or improvements in land condition in any one indicator cannot compensate for degradation in the others.
- Applied because the indicators are complementary not additive.

Why use global data?

- UNCCD has mandate to provide countries with national 'default' data
- Requirements for default data
 - Temporal coverage
 - i.e. availability of reasonably long time series, at least two or more epochs, regular intervals
 - Timeliness
 - i.e. availability of future updates at regular intervals
 - Global coverage
 - Sufficient resolution
 - Clear methods (supported in scientific literature)
 - Accessible & available

Harmonization C and ov comparability

Country ownership

Default global data sources

Indicator	Metrics	Data sources
Trends in land cover	Land cover change	 ESA Climate Change Initiative Land Cover dataset (<u>http://maps.elie.ucl.ac.be/CCI/viewer/</u>) 300m resolution Temporal coverage: annual maps from 2000-2015, released in April 2017 (v 2.0.7) 22 classes → aggregated to 6 classes for UNCCD reporting
Trends in land productivity or functioning of the land	Land productivity dynamics (LPD)	 JRC LPD (<u>http://wad.jrc.ec.europa.eu/</u>) 1 km resolution Temporal coverage: 1999-2013 5 classes
Trends in carbon stocks above and below ground	Soil organic carbon (SOC) stocks	 ISRIC SoilGrids250 (https://soilgrids.org/#!/?layer=TAXNWRB_250m&vector=1) 250 m resolution Temporal coverage: Based on legacy soil data points. Change estimates based on land cover data Continuous data

Global Land Cover data

Global LPD data

Global SOC stock data

Description of degradation in each indicator

LC change (red = degrading process):

	FINAL CLASS						
ORIGINAL CLASS		Tree-covered areas	Grassland	Cropland	Wetland	Artificial surfaces	Other land
	Tree- covered areas	Stable	Vegetation loss	Deforestation	Inundation	Deforestation	Vegetation loss
	Grassland	Afforestation	Stable	Agricultural expansion	Inundation	Urban expansion	Vegetation loss
	Cropland	Afforestation	Withdrawal of agriculture	Stable	Inundation	Urban expansion	Vegetation loss
	Wetland	Woody Encroachment	Wetland drainage	Wetland drainage	Stable	Wetland drainage	Wetland drainage
	Artificial surfaces	Afforestation	Vegetation establishment	Agricultural expansion	Wetland establishment	Stable	Withdrawal of settlements
	Other Land	Afforestation	Vegetation establishment	Agricultural expansion	Wetland establishment	Urban expansion	Stable

Description of degradation in each indicator

LPD:

LPD Values	LPD Classes	Degradation Status for calculation of SDG 15.3.1
1	Decline	Degraded
2	Moderate Decline	
3	Stressed	
4	Stable	Non Degraded
5	Increasing	

Description of degradation in each indicator

SOC change:

From (2000)

 Locations experiencing a decline in SOC stock over the period 2000-2015 (red = degrading process)

To (2015)

LC class	Tree-covered areas	Grassland	Cropland	Wetland	Artificial surfaces	Other Land
Tree-covered areas	Stable	Tree cover loss	Deforestation	Wetland establisment	Deforestation	Deforestation
Grassland	Woody encroachment	Stable	Vegetation loss	Wetland establisment	Urban expansion	Vegetation loss
Cropland	Withdrawal of agriculture	Withdrawal of agriculture	Stable	Wetland establisment	Urban expansion	Vegetation loss
Wetlands	Wetland drainage	Wetland drainage	Wetland drainage	Stable	Wetland drainage	Wetland drainage
Artificial surfaces	Urban greening	Urban greening	Urban agriculture	Water sensitive urban design	Stable	Withdrawal of settlements
Other Land	Afforestation	Vegetation establishment	Vegetation establishment	Wetland establisment	Urban expansion	Stable

Map of degraded land – delivered to each country

- Land degradation map
- Locations where there is degradation in LC change (2000-2015), or LPD (2000-2013), or SOC change (2000-2015).
- Rasters of land degradation for the period are provided in geotiff format.
- Cells are classified as'1' (degraded) or '0' (not degraded).

Ethiopia sub-indicators

LC Change

sector any supervision of sectors, software, or promote concepts of the test represented on any annuals on a sector of densities in their integes. Depiction of boundaries is not uniformative. There are no warranties, expressed or implied, including the warranty of merchanability or finances for a particular papers.

The ESA Clinice Charge Initiative Land Cover (CCI-LC) annual global hard cover time series dataset from 1992-2015, released in April 2017 (v 2.8.7).

Data Sources: LC-X/C global 2016-2013 Han resolution SPOT-VGT time series tensorily sensed segritation index. 2021. https://www.lcs.ac.org/parameters/

SOC Change

United Nations

Example data tables – LC change, Brazil

Year	Land cover (km2)						
	Tree-covered areas	Grassland	Cropland	Wetland	Artificial surfaces	Other land	
2000	4374903	1723766	1995446	247298	16454	4344	
2001	4363481	1723456	2006245	247143	17387	3806	
2002	4353993	1722739	2014768	247129	18214	3675	
2003	4339046	1724810	2026934	247424	18759	3658	
2004	4237417	1728093	2117185	249071	19629	3662	
2005	4236496	1727624	2117820	249330	20321	3675	
2006	4234617	1728587	2118074	249572	20947	3677	
2007	4237073	1727392	2116114	249865	21458	3676	
2008	4237134	1727469	2115341	250115	21886	3685	
2009	4237411	1726870	2115045	250275	22302	3685	
2010	4238185	1727411	2113489	250174	22719	3685	
2011	4234617	1730116	2113634	250127	23126	3685	
2012	4234452	1729974	2113304	250118	23712	3685	
2013	4232944	1731051	2112780	250109	24639	3682	
2014	4235058	1730156	2110758	249944	25334	3672	
2015	4235035	1730105	2110536	249941	25638	3669	
Net area change	-139868	6339	115090	2643	9184	-675	

National level annual area estimates (km²) and net area changes from 2000 to 2015 for 6 LC class.

The *net area change* is calculated as the difference between the initial (2000) and the final monitoring year (2015) for each of the 7 classes.

Conclusion

- Proportion of degraded land is composite indicator establishing degradation baseline:
 - LC change, LPD and SOC change
- One out all out rule means location is degraded if any one indicator is degraded
- The sub-indicators (LC change, LPD and SOC change) provide proxies for ecosystem services (in absence of global ES data)
- Local data and expertise should replace/complement the input indicators
- Significant scope to add depth to sub-indicators with better ES measurements
- But no common standard (yet) available for local-national ES measures