

System of Environmental Economic Accounting

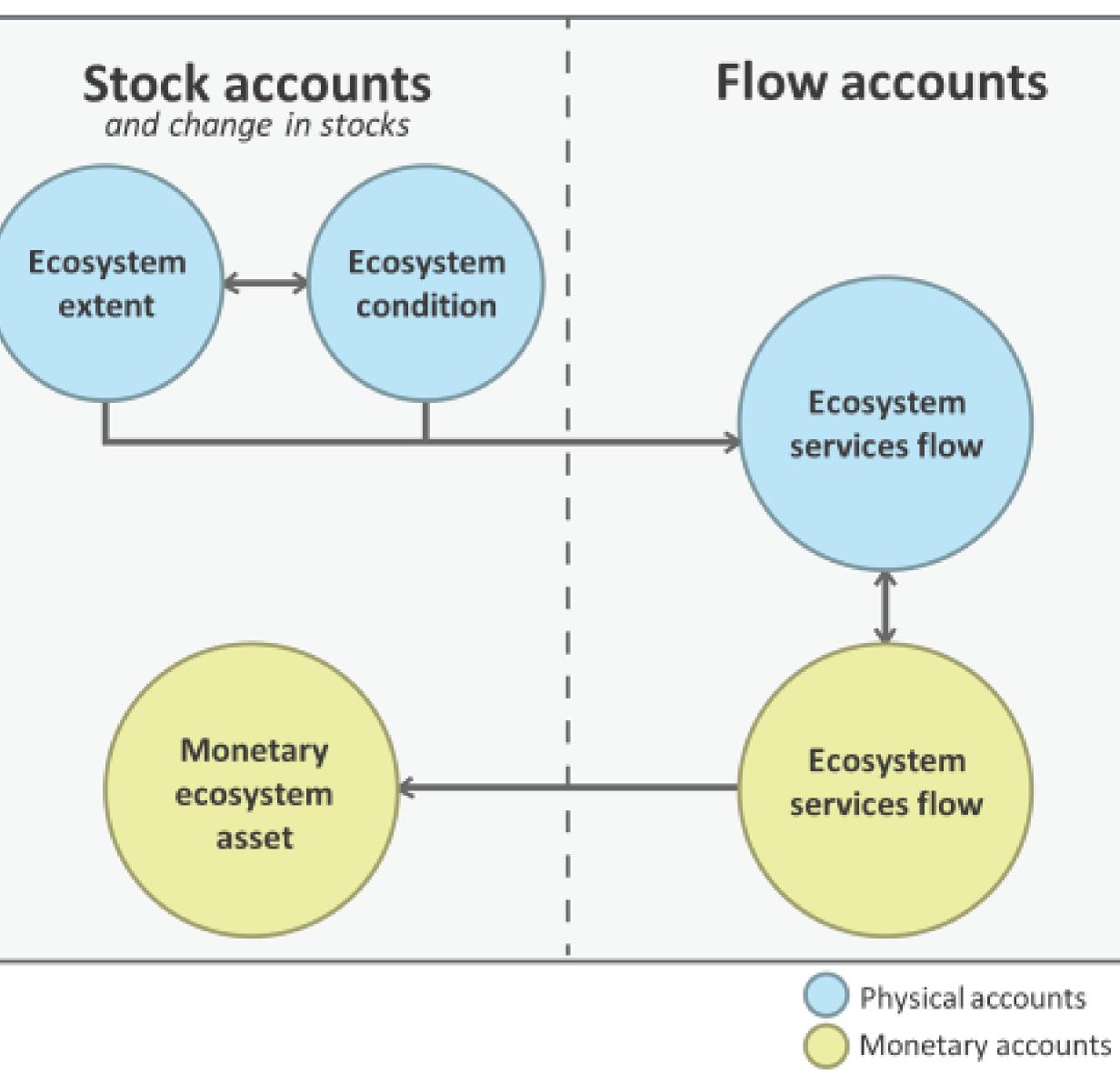
Ecosystem Condition Accounts

Jessica Ying Chan **Environmental-Economic Accounts Section United Nations Statistics Division**

Contents

- Introduction
- Ecosystem condition typology
- Compiling ecosystem condition accounts
- Examples

Introduction



- Why?
 - characteristic composition, structure, functioning and self-organization over time within a
 - > Mainstream ecological concepts and data into economic and development planning > Condition underpins the integrity of an ecosystem -- i.e. ecosystem's capacity to maintain its natural range of variability
 - Higher integrity usually means greater resilience
- Complement environmental monitoring systems
 - > Important information in terms of protecting, maintaining and restoring condition time series! > Accounts provide a structured approach to recording and aggregating data; build upon
 - environmental monitoring systems

- Relationship between condition and services is complex
 - > Depends on the service
- Measures of ecosystem condition will/should tell us more than just the capacity to supply ecosystem services to humans

- Ecosystem condition: **quality of an ecosystem** measured in terms of its abiotic and biotic characteristics.
 - > Characteristics => properties of ecosystems and its (a)biotic components
- What are some of the characteristics that might tell us about the quality or health of an ecosystem?
 - > Water quality
 - > Air pollutant concentrations
 - > Species diversity
 - > Many many, more...

- Focus on characteristics that show change over time as a result of both natural processes and human activity, such as precipitation, temperature, water quality and species abundance
- Ecosystem condition accounts are diverse—dependent on measurement focus, ecosystem types present, and what compiler has defined and selected as ecosystem characteristics
 - > Single characteristic can have many different variables
- How can we think about ecosystem condition in a structured way?

Ecosystem condition typology

Ecosystem condition typology

- Hierarchical typology for organizing data on ecosystem condition characteristics
- Can be used as a template for variable/indicator selection and provide a structure for aggregation

ECT groups and classes

Group A: Abiotic ecosystem characteristics

Class A1. Physical state characteristics: physical descriptors of the abiotic components of the ecosystem (e.g., soil structure, water availability)

Class A2. Chemical state characteristics: chemical composition of abiotic ecosystem compartments (e.g., soil nutrient levels, water quality, air pollutant concentrations)

Group B: Biotic ecosystem characteristics

Class B1. Compositional state characteristics: composition / diversity of ecological communities at a given location and time (e.g., presence / abundance of key species, diversity of relevant species groups)

Class B2. Structural state characteristics: aggregate properties (e.g., mass, density) of the whole ecosystem or its main biotic components (e.g., total biomass, canopy coverage, annual maximum normalized difference vegetation index (NDVI))

Class B3. Functional state characteristics: summary statistics (e.g., frequency, intensity) of the biological, chemical, and physical interactions between the main ecosystem compartments (e.g., primary productivity, community age, disturbance frequency)

Group C: Landscape level characteristics

Class C1. Landscape and seascape characteristics: metrics describing mosaics of ecosystem types at coarse (landscape, seascape) spatial scales (e.g., landscape diversity, connectivity, fragmentation)

Ecosystem condition typology

Table 5.1: The SEEA Ecosystem Condition Typology (ECT)

ECT groups and classes

Group A: Abiotic ecosystem characteristics

Class A1. Physical state characteristics: physical descriptors of the abiotic components of the ecosystem (e.g., soil structure, water availability)

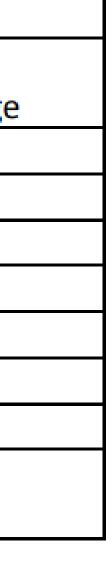
Class A2. Chemical state characteristics: chemical composition of abiotic ecosystem compartments (e.g., soil nutrient levels, water quality, air pollutant concentrations)

Group B: Biotic ecosystem characteristics

Class B1. Compositional state characteristics: composition / diversity of ecological communities at a given location and time (e.g., presence / abundance of key species, diversity of relevant species groups)

Class B2. Structural state characteristics: aggregate properties (e.g., mass, density) of the whole ecosystem or its main biotic components (e.g., total biomass, canopy coverage, annual maximum normalized difference vegetation index (NDVI))

Class B3. Functional state characteristics: summary statistics (e.g., frequency, intensity) of the biological, chemical, and physical interactions between the primary productivity, community age, disturbance fills


Group C: Landscape level characteristics

Class C1. Landscape and seascape characteristics: n coarse (landscape, seascape) spatial scales (e.g., lan

Table 5.2: Ecosystem condition variable account

	Var	iables	Ecosystem type				
SEEA Ecosystem Condition Typology Class	Descriptor	Measurement unit	Opening value	Closing value	Change		
Dhusiaal state	Variable 1						
Physical state	Variable 2						
Chemical state	Variable 3						
Compositional state	Variable 4						
Compositional state	Variable 5						
Structural state	Variable 6						
Functional state	Variable 7						
Landscape/seascape characteristics	Variable 8						

Compiling ecosystem condition accounts

Approach to compiling ecosystem condition accounts

- are reasonably homogeneous in terms of their main characteristics
- Aggregation/dissemination by ecosystem type as each type has distinct characteristics
- SEEA EA: a three-stage approach to account for ecosystem condition.
 - > Variables > indicators > indices
 - additional assumptions.
 - > Outputs at each stage are relevant for policy and decision making

Primary spatial units are ecosystem assets and these are expected to be delineated such that they

> The move from one stage to the next requires a progressive building of data and the use of

Stage I: Variable account

- applications
- Shown by ecosystem type
- **Variable** = soil organic carbon stock, tC/ha (abiotic characteristic, chemical state)
 - > Opening: 100
 - > Closing: 95

Forest							
	SEEA Ecosystem Condit	SEEA Ecosystem Condition Typology Class		unit	Variable	e values (obse	erved)
					Opening	Closing	Change
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Abiotic characteristics	Physical state	Vegetation water content - NDWI	index (-1 to 1)	0.31	0.29	-0.02
		Chemical state	Soil organic carbon stock	tC/ha	100	95	-5
			Foliar or litter nitrogen concentration	mg N / g dry weight	18	17	-1
	Biotic characteristics	Compositional state	Tree species richness	number	6	5	-1
		Structural state	Tree cover	%	81	75	-6
		Functional state	Vegetation index - NDVI	index (-1 to 1)	0.65	0.63	-0.02
SEEA	Landscape/seascape ch	aracteristics	Forest area density	%	74	59	-15

• Precise structure will depend on selected characteristics, data availability, uses of the accounts and policy

Stage II: Indicator account

- Why indicators?
 - > Allows easier interpretation of trends, especially across variables
 - Especially if it is dimensionless
 - Can allow for indices
- How are indicators calculated for condition accounts?
 - > Rescaled ecosystem variables to arrive at individual condition indicator
 - > Suggest to use dimensionless scale (0-1)
- How to re-scale?

> You need to compare past/present/future measured values of the variable to some reference

Stage II: Indicator account - reference condition

- One reference condition should reflect high ecosystem integrity
- How to choose reference condition?
- Ecosystem condition is often defined by measuring the similarity (or the distance) of a state
- Meant to reflect a high ecosystem integrity
- Undisturbed/natural state is preferred reference condition, but may not always be meaningful/feasible

Possible reference conditions

Undisturbed or minimally-disturbed condition of an intact ecosystem. The condition of an ecosystem with maximal ecosystem integrity with no or minimal disturbance.

Historical condition: The condition of an ecosystem at some point or period in its history that is considered to represent the stable natural state (e.g., the pre-industrial period or pre-intensive agriculture).

Least-disturbed condition: the currently best available condition of an ecosystem.

Contemporary condition: The condition of an ecosystem at a certain point or period in its recent history for which comparable data are available.

current ecosystem to a reference state, such as minimally impacted by people or a historical

Stage II: Indicator account - reference condition

- The simplest conversion uses two reference conditions to reflect a high or low condition.
- Once you have a reference condition, you need the **reference levels** for specific condition variables and then can determine an overall reference condition for the ecosystem
 - > The indicators are then calculated by re-scaling data for individual variables using the reference levels as high and low bounds on the variable range.

Stage II: Indicator account

Ecosystem condition indicator

> I = (V - VL) / (VH - VL)

where I is the value of the indicator, V is the value of the variable, VH is the high reference level value and VL is the low reference level value.

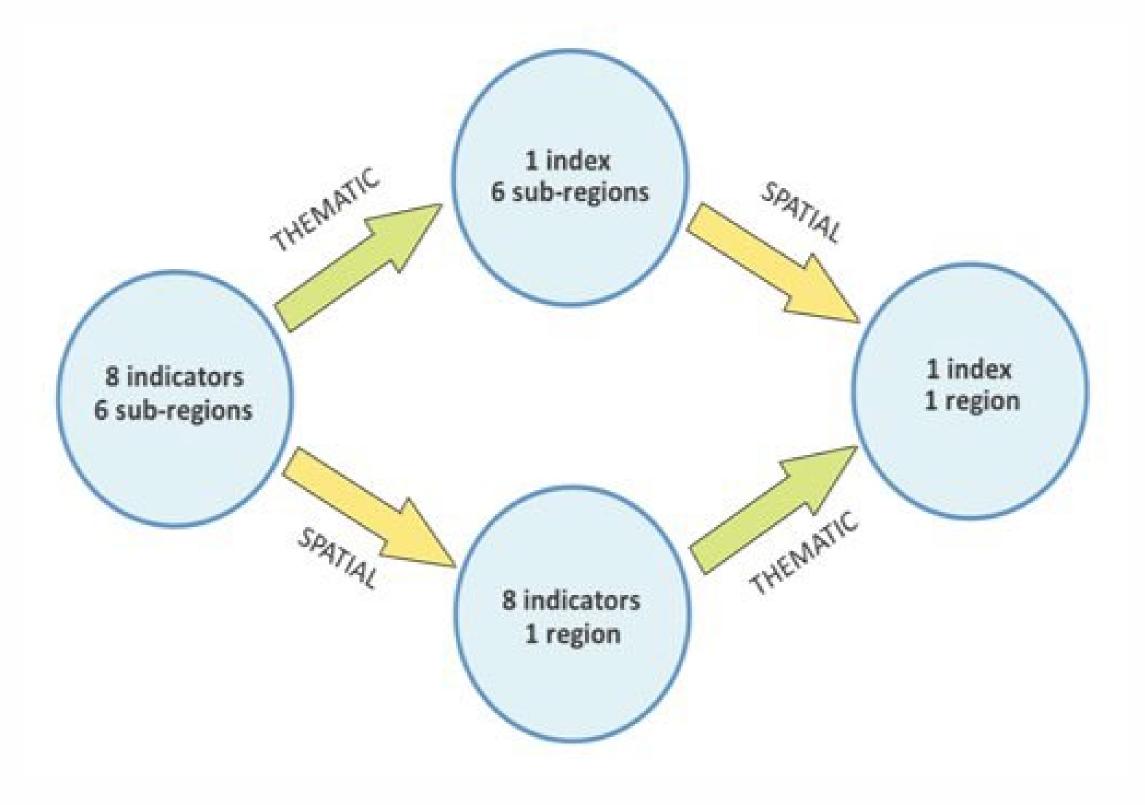
- Example:
 - > Pristine state \rightarrow 250 tC/ha
 - > Bare earth $\rightarrow 0$ tC/ha
 - > Indicator for opening stock of 100 tC/ha and closing stock of 95 tC/ha?

Forest											
Forest				Measurement	Variable		Defense				
-	SEEA Ecosystem Conditi	ion Typology Class	Variable descriptor	unit	(obser		Reference			or values (res	-
_	(1)	(2)	(2)	(4)	Opening	Closing	Lower level		Opening	Closing	Change
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	Abiotic characteristics	Physical state	Vegetation water content - NDWI	index (-1 to 1)	0.31	0.29	-1	1	0.66	0.65	-0.01
		Chemical state	Soil organic carbon stock	tC/ha	100	95	0	250	0.40	0.38	-0.02
			Foliar or litter nitrogen concentration	mg N / g dry weight	18	17	4	40	0.39	0.36	-0.03
	Biotic characteristics	Compositional state	Tree species richness	number	6	5	0	10	0.60	0.50	-0.10
		Structural state	Tree cover	%	81	75	0	100	0.81	0.75	-0.06
		Functional state	Vegetation index - NDVI	index (-1 to 1)	0.65	0.63	-1	1	0.83	0.82	-0.01
1	Landscape/seascape ch	aracteristics	Forest area density	%	74	59	0	100	0.74	0.59	-0.15

- condition.
 - direction of change, and combined to form a composite index.
- E.g.:
 - > Condition index applied to each ecosystem type
 - > Weighted by area of ecosystem type within your ecosystem accounting area
 - > Summed for all ecosystem types
- Pros and cons of indices \rightarrow index account is optional!

• Composed of composite indicators that are aggregated from individual ecosystem condition indicators Aggregation process is underpinned using comparable reference levels from a common reference

> Component indicators are scaled according to reference levels, normalized to a common scale and


- Aggregation can be done in multiple ways
- Thematic aggregation
 - > Combining indicators according to ECT classes/groups
 - Each ecosystem type may have different indicators, but typology classes/groups are same > Assumes that different indicators can compensate for each other
 - Increasing value of one indicator vs. declining value of another \rightarrow stable condition
- Spatial aggregation
 - > Aggregation across ecosystem types, e.g. region, province
 - > Care is needed; is aggregation meaningful? e.g. aggregation across tropical heath forests and photic coral reefs
 - > Should be considered only if ecosystem types have same reference condition

- Several choices for aggregation functions:
 - > Arithmetic mean
 - > Geometric mean,
 - > Quantiles and median
 - > One out, all out approach... etc etc
- Aggregation commutativity
- Selection of weighting system depends on relative importance of each indicator to overall condition of the ecosystem
 - > Need to involve ecologists, ministry of environment, etc.

Table 5.4: Ecosystem condition indices reported using rescaled indicator values ('mean values' **approach)** i.e. sum of the weighted values for abiotic/biotic/landscape characteristics

SEEA Ecosystem Condition	Indicators	Ecosystem type							
Typology Class	inuicators		ndicator value	Index value					
	Descriptor	Opening value	Closing value	Indicator weight	Opening value	Closing value			
	Indicator 1	0.5	0.25	0.05	0.025	0.013			
Physical state	Indicator 2	0.9	0.7	0.05	0.045	0.035			
	Sub-index				0.07	0.048			
Chemical state	Indicator 3	0.625	0.5	0.1	0.063	0.05			
Total Abiotic characteristics					0.133	0.098			
	Indicator 4	0.94	0.89	0.067	0.063	0.062			
Compositional state	Indicator 5	0.75	0.50	0.033	0.025	0.017			
	Sub-index				0.088	0.079			
Structural state	Indicator 6	0.5	0.25	0.12	0.06	0.03			
Functional state	Indicator 7	1	0.66	0.08	0.08	0.053			
Total Biotic characteristics					0.228	0.162			
Landscape and seascape characteristics	Indicator 8	0.5	0.2	0.5	0.25	0.1			
Ecosystem condition index	Index			1.0	0.611	0.360			

Multiple ecosystem types

Table 5.6: Ecosystem condition account (condition indices) for multiple ecosystem types

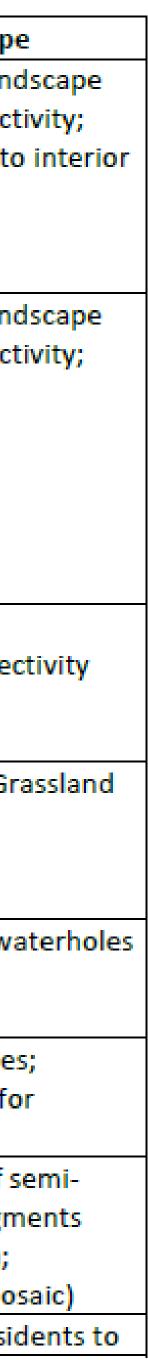

	Stylized ecosystem types							
Accounting entries	Forests	Lakes	Cropland	Urban areas	Wetlands	Seagrass		
Opening condition value								
Change in abiotic ecosystem								
characteristics (physical and								
chemical state)								
Change in biotic ecosystem								
characteristics (composition,								
structure and function)								
Change in landscape/seascape								
characteristics								
Net change in condition								
Closing condition value								

Table 5.7: Examples of ecosystem condition variables for selected ecosystem types⁵²

		A1 Physical state	A2 Chemical state	B1 Compositional state	B2 Structural state	B3 Functional state	C1 Landscape / seascape
T1	Tropical-	Soil water availability in	Soil organic carbon	Tree species richness; Bird	Tree cover density;	Dry matter productivity;	Forest area density; Lands
	subtropical	the driest quarter;	content; Leaf and litter	species richness	Dominant tree height;	Presence of seed	diversity; Forest connectiv
	forests	Wetness	nitrogen concentration		Number of canopy layers;	dispersing species	Ratio of edge distance to
					Deadwood volume; Forest	(capacity for	area of forest patches
					age class distribution;	regeneration); Water	
					Density of epiphytes	stress index	
T2	Temperate-	Vegetation water content	Soil organic carbon	Tree species richness;	Forest floor depth (soil	Dry matter productivity;	Forest area density; Lands
	boreal forests	(NDWI)	content; Air pollutant	Lichen species richness;	layer thickness); Tree	Density of trees with	diversity; Forest connectiv
	& woodlands		concentration; Foliar and	Bird species richness	cover density; Deadwood	hollows for nesting;	
	biome		litter nitrogen		volume; Forest age class	Presence of top predator	
			concentration		distribution	species (food web	
						functionality); Vegetation	
						index (NDVI); Water stress	
						index	
Т3	Shrublands &	% Burnt area; Soil layer	Soil organic carbon	Bird species richness	Tree cover density	Dry matter productivity;	Landscape diversity;
	shrubby	thickness	content; Soil phosphorus			Proportion of re-sprouting	
	woodlands		concentration			species after fire (capacity	
	· · · · · · · · · · · · · · · · · · ·					for regeneration)	
T4		% Bare ground	Soil organic carbon	Bird species richness;	The presence/density of	Dry matter productivity	Connectivity of trees; Gra
	grasslands		content; Soil pH	Butterfly species richness;	trees/shrubs	Abundance of termite	connectivity
				Proportion of non-native		mounds (organic matter	
				species		turnover)	
T5	Deserts and	Water availability; Degree	Soil pH	Reptile species diversity	Vegetation cover	Density of viable seeds in	Spatial distribution of wat
	semi- deserts	of surface crusting		or abundance		soil (capacity for	
						regeneration)	
T6	Polar-alpine	% Bare ground; Snow	Pollutant concentrations	Lichen species richness	Vegetation cover; Lichen		Diversity of habitat types;
	(cryogenic)	depth; Extent of sea ice			cover or abundance on		Connectivity of routes for
	<u> </u>				rocks		migratory species
17.1	Annual	Water holding capacity;	Soil organic carbon	Bird species richness		Soil respiration rate	The presence/ share of se
	croplands	Soil bulk density;	content; Soil nutrient		Crop diversity; Share of	(decomposition); Gross	natural vegetation fragme
		Vegetation water content	availability		time or area as fallow	primary production	(small woody features);
		(NDWI)			land		Landscape diversity (mos
17.4	Urban and	Imperviousness	NO ₂ concentration	Bird species richness	Share of urban green		Average distance of reside

Examples ecosystem condition

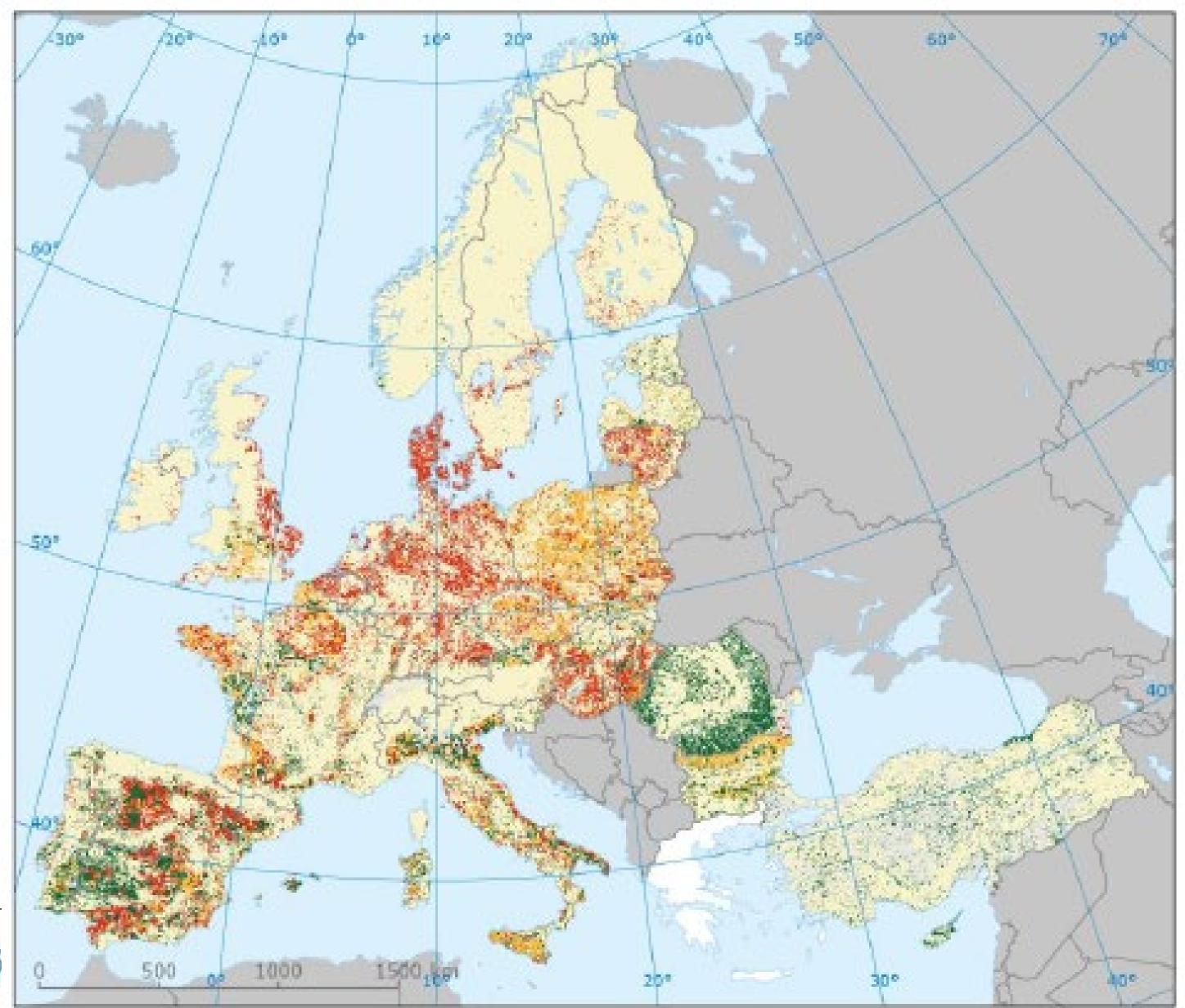
EU: Forest condition variable account

Table 2: Forest condition variable account for EU28 (spatially averaged values)

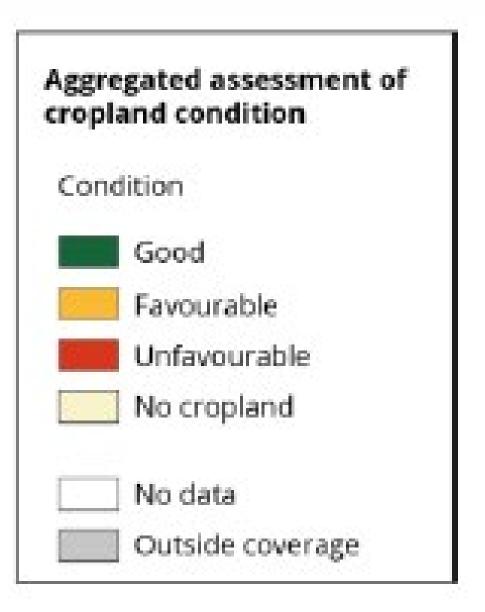
Condition class	Descriptor	Units	Opening stock (2010)	Closing stock (2020 - projected)	Change (% per decade)	Confidence
Physical state	Soil moisture content	%	13.50	13.45	-0.4	medium
Chemical	Effective rainfall	mm/year	-32	-44	-38	high
state	Exceedances of critical loads for eutrophication	equivalent/ha/ year	251.8	173.7	-31	medium
	Tropospheric ozone concentration	ppb hours	19 265	13 293	-31	high
Composition	Common forest birds index (')	Index (1990 = 100)	93.23	104.86	17.8	medium
Structure	Biomass volume	m³⁄ha	200	220	10	medium
	Dead wood	tonne/ha	4.1	4.5	10.3	medium
	Defoliation	%	20	22	10	high
Function	Evapotranspiration	mm/year	482.0	490.2	1.7	high
	Dry matter productivity	tonne/ha/year	11.8	13.1	11.1	high
acteristics	Forest area density	%	72.0	72.1	0.1	high
	class Physical state Chemical state Composition Structure Function	classDescriptorPhysical stateSoil moisture contentChemical stateEffective rainfallStateExceedances of critical loads for eutrophicationTopospheric ozone concentrationTropospheric ozone concentrationCompositionCommon forest birds index (*)Structure Dead woodDefoliationFunctionEvapotranspirationFunctionDry matter productivity	classDescriptorUnitsPhysical stateSoil moisture content%Chemical stateEffective rainfallmm/yearExceedances of critical loads for eutrophicationequivalent/ha/ yearTropospheric ozone 	classDescriptorUnitsstock (2010)Physical stateSoil moisture content%13.50Chemical stateEffective rainfallmm/year-32StateEffective rainfallmm/year-32Exceedances of critical loads for eutrophicationequivalent/ha/ year251.8Topospheric ozone concentrationppb hours19.265CompositionCommon forest birds index (1)Index (1990 = 100)93.23Structure Dead woodm³/ha200Function%20Function productivitymm/year482.0	Condition classDescriptorUnitsOpening stock (2010)stock (2020- projected)Physical stateSoil moisture content%13.5013.45Chemical stateEffective rainfallmm/year-32-44Exceedances of critical loads for eutrophicationequivalent/ha/ year251.8173.7Topospheric ozone concentrationpbb hours1926513 293CompositionCommon forest birds index (?)Index (1990 = 100)93.23104.86Structure DefolationKonne/ha4.14.5Function%2022FunctionEvapotranspirationmm/year482.0490.2Tory matter productivitytonne/ha/year11.813.1	Condition classDescriptorUnitsOpening stock (2010)stock (2020- projected)Change (% per decade)Physical stateSoil moisture content%13.5013.45-0.4Chemical stateEffective rainfallmm/year-32-44-38Exceedances of critical loads for eutrophicationequivalent/ha/ year251.8173.7-31Topospheric ozone concentrationpb hours19.26513.293-31CompositionCommon forest bids index (?)Index (1990 = 100)93.23104.8617.8Structure DefolationBiomass volumerm?/ha20022010Function%20221010.3FunctionEvapotranspirationmm/year482.0490.21.7Top matter productivitytonne/ha/year11.813.111.1

Source sdg_15_60, EU Ecosystem Assessment

(*) Closing stock for the common forest bird index uses year 2017



• Some findings:


- > Forest pollution levels are declining across the EU28 but absolute levels of still very high
- > Forest productivity increased.
- > Pressures from climate change are increasing (evapotranspiration up; effective rainfall down)
- > Concerning trend is defoliation
- > Fragmentation remained virtually constant since 2010.

EU: Cropland index account

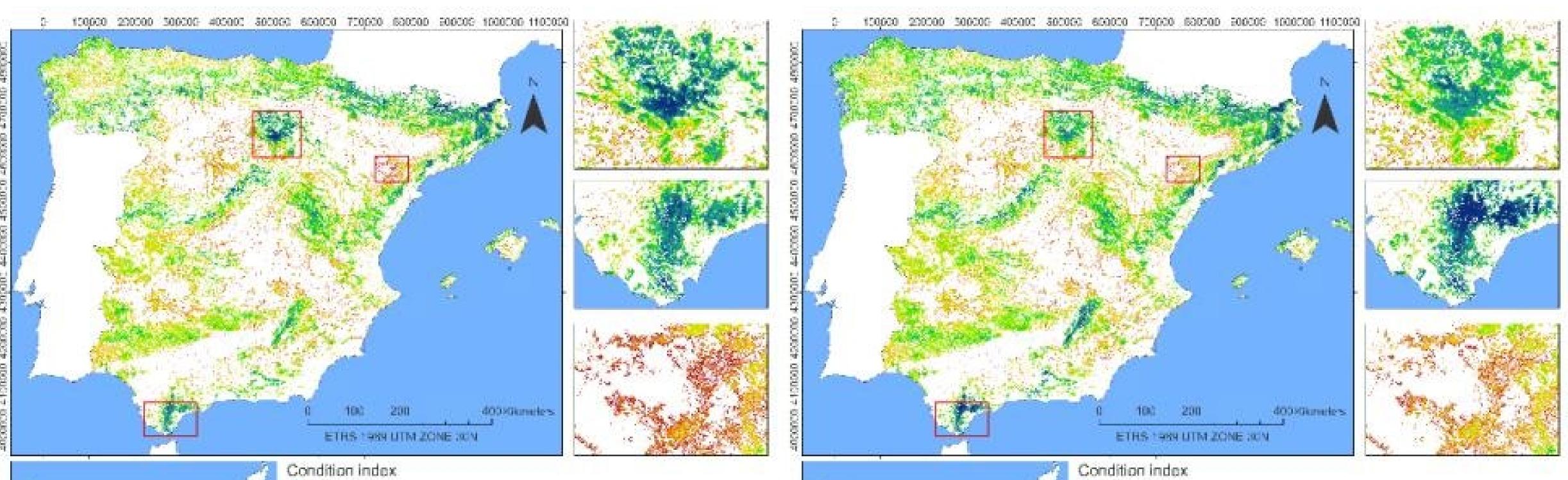
Experimental System of Ecosystem Accounts in Spain

ecosystem services.

•<u>•</u>••

Group	Class	Weigth	Indicator	Source	Resolution (m)
		0,07	NDWI	Landsat	30
Abiotic	Physical state	0,07	Soil organic carbon	Lucas	1000
characteristics		0,07	Ozone (AOT40f)	EEA	2000
	Chemical state	0,07	Nitrogen Deposition (Critical Loads)	EEA	5000
	Composition state	0, I	Forest bird richness	MITERD	1000
Biotic		0, I	Richness of forest flora	MITERD	1000
characteristics	Structural state	0,12	Tree cover	Modis	250
character istres		0, 1	NDVI	Landsat	30
	Functional state	0,08	Gross primary production	Modis	500
Landscape	Landscape	0,12	Forest area density	Guidos	50
characteristics	characteristics	0, I	Naturalness index	Guidos	50

- 2. CONDITIONS ACCOUNTS: The SEEA-EA condition is a metric that captures, through a set of key indicators,
- the state and functioning of the ecosystem in relation to both its ecological condition and its capacity to provide
 - Indicators used in the forest condition in Spain



Experimental System of Ecosystem Accounts in Spain

2. CONDITIONS ACCOUNTS: results are presented in maps for forest ecosystems for different time periods between 2000-2015. 2000 2015

0.125 CArea of interest

0.149Area of interest

••••

Experimental System of Ecosystem Accounts in Spain

different time periods between 2000-2015.

Condition index by forest type

Forest Type	2000	2015	Change	Forest Type	2000	2015	Change
Broad. Sclerophyllous Med.	0.536	0.561	0.025	Con. Atlantic	0.601	0.630	0.029
Broad. Continental Med.	0.556	0.565	0.009	Con. Alpine	0.735	0.730	-0.005
Broad. Mountain Med.	0.607	0.598	-0.009	Con. Insular	0.585	0.660	0.075
Broad. Atlantic	0.568	0.602	0.033	Mixed Sclerophyllous Med.	0.571	0.601	0.030
Broad. Alpine	0.661	0.693	0.032	Mixed Continental Med.	0.602	0.606	0.005
Broad. Insular	0.661	0.712	0.050	Mixed Mountain Med.	0.591	0.601	0.009
Con. Sclerophyllous Med.	0.546	0.573	0.027	Mixed Atlantic	0.580	0.616	0.036
Con. Continental Med.	0.593	0.596	0.003	Mixed Alpine	0.758	0.775	0.017
Con. Mountain Med.	0.609	0.606	-0.003	Mixed Insular	0.654	0.716	0.063

