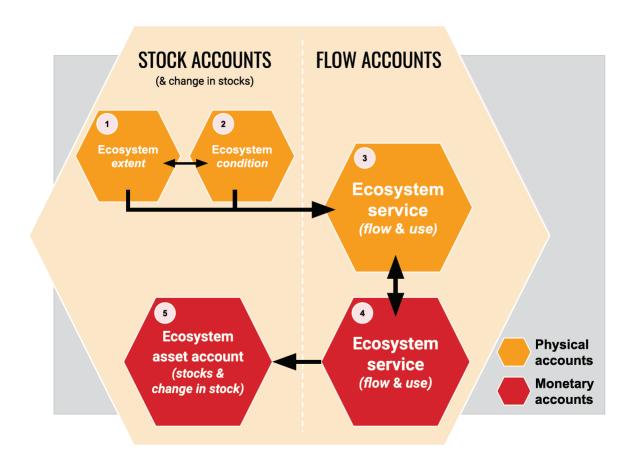
Highlights of The NCAVES Project in China

In China, NCAVES was implemented by:


National Bureau of Statistics of China.

In close collaboration with:

- Statistical Bureau of Guangxi Zhuang Autonomous Region.
- Guizhou Bureau of Statistics.
- Research Center for Eco-Environmental Sciences of the Chinese Academy of Sciences.

The NCAVES project set out to:

- 1. Strengthen capacity for the compilation of natural resources balance sheets.
- Pilot ecosystem accounts for two provinces: Guangxi and Guizhou.
- 3. Test the framework of SEEA EEA and contribute China's best practices and experience to its revision.
- 4. Test the related indicators of the ecosystem including SDG and their relationship with the economy.

The SEEA EA framework showing the relationship between extent and condition accounts and supply and use accounts

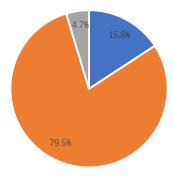
Main achievements of the NCAVES in China

- > Firstly, a preliminary research on the valuations methods for main natural resources assets has been completed.
- ➤ **Secondly,** under the framework of SEEA, Guangxi and Guizhou separately compiled its ecosystem pilot accounts, covering the extent, condition and services of ecosystem. Besides, Guangxi completed scenario-based analysis of ecological compensation standards for the Xijiang river basin.
- > Thirdly, the relationships between economy and SDG and ecosystem related indicators has been tested in Guangxi.
- Fourthly, the NCAVES project has contributed towards alignment between the SEEA and GEP with the result that GEP is now included in the SEEA EA framework, and is proposed as one of the headline indicators for the post-2020 Global Biodioversity Framework (GBF)

1 ECOSYSTEM ACCOUNTS FOR **GUANGXI**

1.1 Ecosystem

- Extent accounts
- > Ecosystem condition account


1.2 Ecosystem Services Accounts (Flow Accounts)

- Classification framework
- > Physical flow accounts
- Monetary flow accounts

Table 15: Physical flow accounts of regulating services (Unit: ton)

			Ecosystem Types							
Service types										
Global climate regulation services	Carbon sequestration	2016	5,247,125	15,956,884	103,148	107,100	1,951	51,197	21,467,405	
		2017	5,241,195	16,042,383	102,371	106,269	1,884	50,438	21,544,540	
Air purification services	Absorbing sulphur dioxide	2016	2190,59	139,036	55,772			1,862	415,729	
		2017	218,802	139,171	55,352			1,834	415,159	
	Absorbing fluoride	2016	2,264	3,259	13,340			124	18,987	
		2017	2,262	3,250	1,330			122	6,964	
	Absorbing nitrogen oxides	2016	161,987	8,243	41,309			121	211,660	
		2017	161,796	8,256	40,997			119	211,168	
	Dust retention	2016	403,652	24.96×10 ⁶	132,181			237,443	773,276	
		2017	403,180	24.93×10 ⁶	131,303			233,920	768,403	
Water purification services	Inorganic nitrogen purification	2016					8220		8,220	
		2017					7084		7,084	
	Active phosphate purification	2016					514		514	
		2017					443		443	
	Chemical oxygen demand (COD) treatment	2016					337,593		337,593	
		2017					521,915		521,915	
	Petroleum disposal	2016					956		956	
		2017					1,146		1,146	
Water flow regulation services	Conserving water resources	2016		368.65×108	27.53×108			0.99×108	397.17×108	
		2017		404.79×10 ⁸	29.84×108			1.17×108	435.80×108	
Mitigation services	Farmland protection	2016		1521.3×104					1521.3×104	
		2017		1453.8×10 ⁴					1453.8×10 ⁴	
	Flood mitigation	2016				124.78×108			124.78×108	
		2017				125.21x10 ⁸			125.21×108	
Soil and sediment	Soil retention	2016	1.44×108	4.09×108	0.37×10 ⁸			0.01×108	5.91×108	
retention services		2017	1.44×108	4.14×108	0.37×108			0.01×108	5.96×108	

Total value of ecosystem services in 2017

Provisioning services

Regulating services

Cultural services

2 ECOSYSTEM ACCOUNTS FOR **GUIZHOU**

2.1 Ecosystem Extent Accounts

2.2 Ecosystem Condition Accounts

2.3 Ecosystem Services Accounts

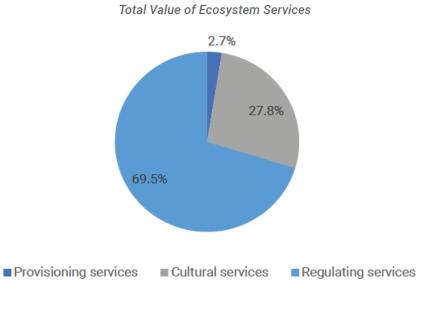


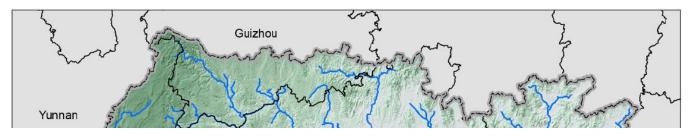
Table 23: Scores for Ecosystem Condition Account (2018)

Area	Physical condition	n Environmental co	ondition Bio	ological condition	Human Interference		Total score	Grade	Condition	
	Proportion					Proportion of				

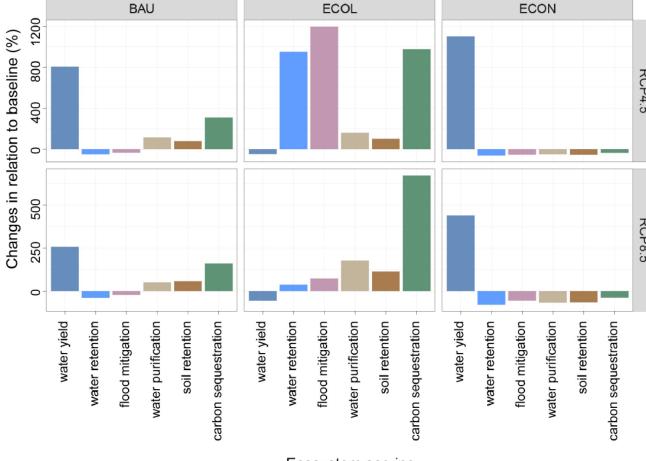
Table 25: Definitions of Ecosystem Services

Name of Services	Definition of Services						
Soil and sediment retention services	The ecosystem reduces the erosion energy of rainwater and soil loss through its structure and process.						
Carbon sequestration	Plants convert carbon dioxide into carbohydrates through photosynthesis and fix it in plants or soil in the form of organic carbon, which can effectively slow down the rising concentration of carbon dioxide in the atmosphere, regulate oxygen content in the atmosphere, and reduce greenhouse gas emissions.						
Water flow regulation services	The ecosystem intercepts stagnant precipitation and enhances soil infiltration through its structure and process to effectively conserve soil water, replenish groundwater and regulate the river flow.						
Flood control services	The wetland ecosystem can reduce flood peak by storing flood peak water to reduce the environmental effect generated by flood threat.						
Air filtration service	The ecosystem absorbs, filters and decomposes pollutants in the atmosphere, such as SO2, NOx and dust, so as to effectively purify the air and improve the atmospheric environment.						
Water purification services	An ecological effect that the pollutants entering the water environment can be adsorbed, transformed and absorbed by plankton through a series of physical and biochemical processes, thus achieving the water purification.						
Local climate regulation	The ecosystem reduces atmospheric temperature and increases humidity through transpiration of vegetation and evaporation of water.						
Biological control services	The ecosystem reduces the population quantity of phytophagous insects by increasing the diversity of species and increasing the number of their natural enemies to achieve pests and disease control.						

3 The Xijiang River Eco-Compensation Scheme


Scenarios conditions :

- ✓ Business-As-Usual (BAU): of land-cover changes was assumed to continue over 2015-2035.
- ✓ Ecological Protection Priority (ECOL): focuses on the protection and restoration of forests, grassland and wetlands.
- ✓ Economic Development Priority (ECON): focuses on economic development, with the expansion of built-up land at the expense of forest, grassland and wetlands.


Rseults (projected under six scenarios)

- ✓ RCP4.5 : the highest provision of regulating services
- ✓ Total ecological compensation expected to be obtained by the upstream regions in 2015 should be between 48.5 ~693.5 billion CNY

Figure 2: Location of the Xijiang River in Southern China

Figure 3: Changes in the biophysical supply of ecosystem services for Xijiang under different climate and land cover scenarios in 2035 in relation to the baseline

Ecosystem service

4 Next steps

1

➤ NBS is organizing to translate and publish (authorized by UN) the SEEA-EA.

2

➤NBS will investigate the compilation of national ecosystem accounts, especially formulating the unified accounting system for the valuation of GEP.

3

➤ NBS will also investigate the concepts for natural resource liabilities, to work out the valuation methods for main natural resources so as to compile NRBS in monetary terms.