# Ecosystem service accounts -Indicators

Becky Chaplin-Kramer Hye-Jin Kim Ken Bagstad

| Potential indicators on physical ecosystem                                                                                                                   |                                                                  |                                  | Essential Ecosystem Service Variable Classes<br>(EESV classes) | EESV class definition                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical ecosystem services flow<br>indicators                                                                                                               | ical ecosystem services flow<br>indicators Further description S |                                  | Ecological supply                                              | The ecosystem structure and functions that<br>underlie the potential capacity of ecosystems to<br>provide ecosystem services.                                                                                   |
| Amount of biomass generated<br>Water abstracted for use by<br>household and industry (proxy                                                                  | Biomass provisioning<br>services                                 | Ecosy<br>accou<br>Ecosy          | Anthropogenic contribution                                     | The efforts that humans invest to enhance<br>ecological supply and to make use of ecosystem<br>services. Anthropogenic contributions and<br>ecological supply interact through the process of<br>co-production. |
| measure)<br>Tonnes of carbon retained<br>(captured and stored/trend in the<br>carbon sequestered)                                                            | Water supply services<br>Global climate regulation<br>services   | accou<br>Ecosy<br>accou          | Demand                                                         | Explicitly or implicitly expressed human desire or<br>need for an ecosystem service, in terms of its<br>quantity or quality, irrespective of whether<br>awareness exists about such need.                       |
| Tonnes of airborne pollutants captured (e.g., PM10; PM2.5)                                                                                                   | Air filtration services                                          | Ecosy<br>accou                   | Use                                                            | Active or passive appropriation of an ecosystem service by people.                                                                                                                                              |
| Tonnes of waterborne pollutants<br>removed (e.g., chemical oxygen<br>demand) from wastewater<br>Number of properties/ km of<br>coast/shoreline/riparian zone | Water purification services                                      | Ecosy<br>accou                   | Instrumental values                                            | The importance of an ecosystem service to<br>societies or individuals as a means to achieve a<br>specific end (e.g. some dimension of human well-<br>being).                                                    |
| protected;<br>change in degree of risk<br>Number of tourist/recreation visits                                                                                | Flood mitigation services<br>Recreation-related<br>services      | Ecosy<br>accou<br>Ecosy<br>accou | Relational values                                              | The importance ascribed to how ecosystems<br>contribute to desirable and meaningful<br>interactions between humans and nature and<br>between humans in relation to nature.                                      |

#### Ecosystem Services

| EBV or Indicator                             | METRIC                                  | Number of<br>candidate<br>products in<br>EBV2020 | Provisioning | Regulating | Cultural |
|----------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------|------------|----------|
| Ecological Supply                            | Water quality: nitrogen retention       | 1                                                |              | X          |          |
| Ecological Supply                            | Water quality: sediment retention       | 1                                                |              | x          |          |
| Ecological Supply                            | Water provision                         | 1                                                |              |            |          |
| Ecological Supply                            | Carbon storage                          | 2                                                |              |            |          |
| Anthropological contribution to supply       | Food production (plant-based?)          | 1                                                | х            |            |          |
| Demand                                       |                                         | 0                                                |              |            |          |
| Use                                          | Coastal risk reduction                  | 1                                                |              | x          |          |
| Use                                          | Fisheries catches                       | 1                                                | Х            |            |          |
| Use                                          | Nature-based tourism                    | 1                                                |              |            | x        |
| Use                                          | River flood protection                  | 1                                                |              | X          |          |
|                                              | Water quality regulation for downstream |                                                  |              |            |          |
| Use                                          | beneficiaries                           | 1                                                |              | X          |          |
| Instrumental value                           |                                         | 0                                                |              |            |          |
| Relational value                             |                                         | 0                                                |              |            |          |
| Other (ebv based indicator or cross-cutting) | Erosion control                         | 1                                                |              | x          |          |
| Other (ebv based indicator or cross-cutting) | Pest control                            | 1                                                |              | x          |          |
| Other (ebv based indicator or cross-cutting) | Pollination                             | 2                                                | -            | X          |          |

Indicators for ecosystem service accounts: examples from global modeling & national case studies



#### Use

### Coastal risk reduction (flood mitigation)

### Ecological supply









# Case study: Costa Rica







## Enhancing sediment modeling with Earth observations



### Enhancing sediment modeling with Earth observations











0.0

Coeficiente/Estimate

0.5

assets

-0.5

Huella humana/Human footprint

Vertebrados/Vertebrates

Cobertura forestal/Photosynthetic cover



Underestimate 0.10 tourism without 0.05 biodiversity 0.00

**Overestimate** 

-0.05

-0.10

-0.15



Use

**Tourism predicted** (from biodiversity)

### Deriving indicators from SEEA accounts in the United States November 2020 Ken Bagstad



## Overview of current U.S. SEEA accounts

| Account<br>type     | Extent                              | EAAs<br>reported | Scope                                                                                                                          | Analysis<br>years | Reference                   |
|---------------------|-------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|
| Land                | 50 states                           | State            | Land cover, use, value                                                                                                         | 2000-2016         | Wentland<br>et al. 2020     |
| Water               | 50 states                           | State            | Water use, productivity, emissions, quality                                                                                    | 2000-2015         | Bagstad et<br>al. 2020      |
| Ecosystems          | 10 states, U.S.<br>Southeast        | State            | Carbon storage, crop pollination, air<br>purification, water purification,<br>recreational birdwatching, avian<br>biodiversity | 2001-2011         | Warnell et<br>al. 2020      |
| Urban<br>ecosystems | 768 cities with population > 50,000 | City             | Urban heat mitigation, rainfall interception                                                                                   | 2011-2016         | Heris et al.<br>in revision |

### Combined presentation for 27-county Atlanta, Georgia Metropolitan Statistical Area



| Account                    | Metric                                                    |                                  | % change, |
|----------------------------|-----------------------------------------------------------|----------------------------------|-----------|
|                            |                                                           |                                  | 2001-2011 |
| Land accounts <sup>1</sup> | Developed land cover                                      |                                  | 17.2%     |
|                            | Agricultural land cover                                   |                                  | -6.3%     |
|                            | Forested land cover                                       |                                  | -9.3%     |
|                            | Other land cover                                          |                                  | 18.6%     |
| Water accounts             | Total water use (million 2000–2010) <sup>2</sup>          | gallons/day,                     | - 57.8%   |
|                            | Water productivity (\$/10<br>use, 2000–2010) <sup>3</sup> | 00 gallons water                 | 153.3%    |
|                            | % of water-quality                                        | Nitrate $(n = 7)$                | 57%       |
|                            | monitoring sites                                          | Specific                         | 67%       |
|                            | reporting significant                                     | conductance                      |           |
|                            | declines, 2002–2012) <sup>4</sup>                         | (n = 6)                          |           |
|                            |                                                           | Total suspended solids $(n = 4)$ | 25%       |
| Foosystem                  | % of flownath in purifyi                                  | no land cover                    | - 18 2%   |
| accounts <sup>5</sup>      | Mean annual concentrat                                    | ion CO                           | 21.2%     |
| accounts                   | (2010-2015)                                               | юп, со                           | 21.370    |
|                            | Mean annual concentrat<br>(2010–2015)                     | -0.8%                            |           |
|                            | Mean annual concentrat                                    | ion, O <sub>3</sub>              | -2.7%     |
|                            | (2010-2015)                                               |                                  |           |
|                            | Mean annual concentrat<br>(2010–2015)                     | ion, PM <sub>10</sub>            | -18.2%    |
|                            | Mean annual concentrat<br>(2010–2015)                     | ion, PM <sub>2.5</sub>           | -10.2%    |
|                            | Mean annual concentrati<br>(2010-2015)                    | ion, SO <sub>2</sub>             | - 57.0%   |
|                            | Mean annual removal ra                                    | tes, CO                          | 25.3%     |
|                            | Mean annual removal ra                                    | tes, NO <sub>2</sub>             | 9.1%      |
|                            | (2010–2015)<br>Manual manual manual mat                   | 0 (2010 2015)                    | 0.70/     |
|                            | Mean annual removal rat                                   | es, O <sub>3</sub> (2010-2015)   | - 2.7%    |
|                            | (2010–2015)                                               | tes, PM <sub>10</sub>            | - 20.5%   |
|                            | Mean annual removal ra<br>(2010–2015)                     | tes, PM <sub>2.5</sub>           | 11.0%     |
|                            | Mean annual removal ra                                    | tes, SO <sub>2</sub>             | - 49.2%   |
|                            | Total precipitation                                       |                                  | 31.9%     |
|                            | Temperature                                               |                                  | 6.9%      |
|                            | Recreational birding-day                                  | s                                | 209.6%    |
|                            | Carbon storage (2001-20                                   | 010)                             | -1.6%     |
| Urban ecosystem            | Energy savings due to co                                  | ooling effect of                 | 2%        |
| accounts-                  | urban trees                                               | urban treas                      | 00/       |
| Economic                   | CDD all industries                                        | irban trees                      | - 8%      |
| accounts <sup>7</sup>      | GDP, all industries                                       |                                  | 0.0%      |
| Population (2000-20        | 010) <sup>8</sup>                                         |                                  | 24.0%     |

## Crop pollination & agriculture

|                | GDP from | Pollinator habitat: |
|----------------|----------|---------------------|
|                | farms,   | Pollinator-         |
|                | million  | dependent crop      |
|                | 2012 USD | area                |
| Alabama        | 1,099    | 7.96                |
| Arkansas       | 1,788    | 0.57                |
| Florida        | 4,493    | 3.22                |
| Georgia        | 2,727    | 3.22                |
| Louisiana      | 1,381    | 1.51                |
| Mississippi    | 1,376    | 2.00                |
| Missouri       | 3,859    | 1.25                |
| North Carolina | 3,210    | 5.84                |
| South Carolina | 768      | 7.95                |
| Tennessee      | 1,517    | 3.01                |

Improved indicators will be possible in future national pollination accounts



Mississippi



# SDG 11: Make cities & human settlements inclusive, safe, resilient, & sustainable

|                    |           |                  |                     | Average           |                                      | Energy Savings (million \$) Interception (10 <sup>6</sup> m <sup>3</sup> water) |       |                   |                   |       |                   |                   |                       |                               |             |                         |                   |                       |                            |             |                         |
|--------------------|-----------|------------------|---------------------|-------------------|--------------------------------------|---------------------------------------------------------------------------------|-------|-------------------|-------------------|-------|-------------------|-------------------|-----------------------|-------------------------------|-------------|-------------------------|-------------------|-----------------------|----------------------------|-------------|-------------------------|
| City Population    |           | Housing<br>Units | City Area<br>(acre) | Cooling<br>Energy | oling Electricity<br>hergy Cost (\$/ |                                                                                 | 2011  |                   |                   | 2016  |                   |                   |                       | 2011                          |             |                         |                   |                       | 2016                       |             |                         |
|                    |           |                  |                     | (KBTU)            | KWN)                                 | Lower Cl<br>(95%)                                                               | Mean  | Upper Cl<br>(95%) | Lower Cl<br>(95%) | Mean  | Upper Cl<br>(95%) | Copernicus<br>LAI | i-Tree LAI<br>Average | %<br>Intercepted<br>(Average) | i-Tree +10% | Total<br>Canopy<br>Rain | Copernicus<br>LAI | i-Tree LAI<br>Average | % Intercepted<br>(Average) | i-Tree +10% | Total<br>Canopy<br>Rain |
| New York, NY*      | 8,175,133 | 3,371,062        | 195,245             | 17                | 0.18                                 | 1.11                                                                            | 1.15  | 1.19              | 1.34              | 1.40  | 1.46              | 5.03              | 11.00                 | 4.1%                          | 12.02       | 268.51                  | 5.17              | 11.41                 | 6.4%                       | 12.41       | 179.02                  |
| Los Angeles, CA    | 3,792,621 | 1,413,995        | 302,553             | 14                | 0.20                                 | 14.42                                                                           | 16.52 | 18.61             | 14.48             | 16.59 | 18.71             | 1.38              | 4.83                  | 6.1%                          | 5.20        | 79.43                   | 0.96              | 3.48                  | 5.3%                       | 3.78        | 65.40                   |
| Chicago, IL*       | 2,695,598 | 1,194,337        | 147,920             | 15                | 0.13                                 | 2.32                                                                            | 2.42  | 2.52              | 2.33              | 2.42  | 2.52              | 1.31              | 4.25                  | 6.2%                          | 4.65        | 68.22                   | 1.20              | 3.91                  | 6.2%                       | 4.27        | 63.30                   |
| Houston, TX        | 2,099,451 | 892,646          | 400,630             | 21                | 0.12                                 | 1.66                                                                            | 2.01  | 2.35              | 1.54              | 1.87  | 2.19              | 13.21             | 30.76                 | 4.1%                          | 33.59       | 754.09                  | 18.56             | 42.10                 | 2.5%                       | 46.07       | 1,673.66                |
| Philadelphia, PA*  | 1,526,006 | 670,171          | 90,344              | 27                | 0.14                                 | 0.98                                                                            | 1.05  | 1.12              | 1.00              | 1.07  | 1.14              | 3.46              | 6.29                  | 4.2%                          | 6.87        | 150.50                  | 3.03              | 5.76                  | 6.1%                       | 6.28        | 94.66                   |
| Phoenix, AZ        | 1,445,632 | 590,149          | 331,486             | 30                | 0.12                                 | 0.01                                                                            | 0.01  | 0.01              | 0.01              | 0.01  | 0.01              | 0.00              | 0.00                  | 9.1%                          | 0.00        | 0.00                    | 0.00              | 0.00                  | 7.9%                       | 0.00        | 0.00                    |
| San Antonio, TX    | 1,327,407 | 524,246          | 298,696             | 21                | 0.12                                 | 5.33                                                                            | 5.95  | 6.57              | 5.39              | 6.03  | 6.67              | 7.16              | 20.49                 | 4.9%                          | 22.32       | 415.52                  | 13.37             | 39.09                 | 3.1%                       | 42.70       | 1,258.67                |
| San Diego, CA      | 1,307,402 | 516,033          | 210,707             | 14                | 0.20                                 | 4.43                                                                            | 5.07  | 5.70              | 4.53              | 5.19  | 5.85              | 0.55              | 2.33                  | 8.3%                          | 2.51        | 27.91                   | 0.48              | 2.05                  | 7.8%                       | 2.22        | 26.32                   |
| Dallas, TX         | 1,197,816 | 516,639          | 246,941             | 21                | 0.12                                 | 3.87                                                                            | 4.24  | 4.61              | 3.93              | 4.30  | 4.67              | 5.30              | 19.06                 | 4.1%                          | 20.84       | 468.81                  | 8.96              | 30.47                 | 3.7%                       | 33.35       | 825.90                  |
| San Jose, CA       | 945,942   | 314,038          | 114,037             | 14                | 0.20                                 | 1.78                                                                            | 2.03  | 2.28              | 1.82              | 2.08  | 2.34              | 0.58              | 1.87                  | 8.5%                          | 2.03        | 22.03                   | 0.52              | 1.60                  | 5.8%                       | 1.74        | 27.80                   |
| Jacksonville, FL   | 821,784   | 366,273          | 529,743             | 22                | 0.12                                 | 12.28                                                                           | 14.02 | 15.76             | 13.09             | 15.11 | 17.13             | 127.39            | 199.94                | 3.7%                          | 218.42      | 5,429.57                | 132.27            | 204.71                | 3.6%                       | 223.76      | 5,668.90                |
| Indianapolis, IN*  | 820,445   | 379,856          | 235,536             | 23                | 0.12                                 | 5.73                                                                            | 6.18  | 6.63              | 5.78              | 6.24  | 6.69              | 13.82             | 25.80                 | 5.5%                          | 28.13       | 468.35                  | 12.00             | 21.30                 | 4.9%                       | 23.23       | 431.59                  |
| San Francisco, CA* | 805,235   | 376,942          | 30,433              | 14                | 0.20                                 | 0.09                                                                            | 0.10  | 0.10              | 0.10              | 0.10  | 0.11              | 0.16              | 0.38                  | 7.3%                          | 0.42        | 5.28                    | 0.18              | 0.40                  | 4.9%                       | 0.44        | 8.08                    |
| Austin, TX         | 790,390   | 354,241          | 195,240             | 21                | 0.12                                 | 9.14                                                                            | 10.49 | 11.85             | 9.21              | 10.59 | 11.97             | 10.12             | 28.99                 | 6.8%                          | 31.41       | 425.63                  | 18.28             | 54.78                 | 3.5%                       | 59.72       | 1,549.90                |
| Columbus, OH*      | 787,033   | 370,965          | 142,787             | 20                | 0.12                                 | 2.12                                                                            | 2.30  | 2.49              | 2.09              | 2.27  | 2.44              | 6.29              | 13.18                 | 5.7%                          | 14.39       | 232.98                  | 5.18              | 10.72                 | 7.0%                       | 11.68       | 152.35                  |
| Fort Worth, TX     | 741,206   | 291,086          | 222,632             | 21                | 0.12                                 | 2.04                                                                            | 2.25  | 2.46              | 2.09              | 2.30  | 2.51              | 2.56              | 9.81                  | 4.5%                          | 10.70       | 217.68                  | 3.30              | 12.47                 | 4.0%                       | 13.63       | 309.81                  |
| Charlotte, NC      | 731,424   | 319,918          | 191,786             | 31                | 0.12                                 | 12.90                                                                           | 14.58 | 16.26             | 13.61             | 15.52 | 17.42             | 21.18             | 50.11                 | 4.7%                          | 54.79       | 1,060.76                | 20.49             | 47.01                 | 4.9%                       | 51.28       | 965.09                  |
| Detroit, MI*       | 713,777   | 349,170          | 89,042              | 14                | 0.15                                 | 0.78                                                                            | 0.82  | 0.87              | 0.78              | 0.83  | 0.88              | 1.74              | 4.61                  | 6.4%                          | 5.03        | 71.87                   | 1.57              | 4.17                  | 8.2%                       | 4.54        | 51.06                   |
| Memphis, TN        | 646,889   | 291,883          | 207,362             | 33                | 0.11                                 | 4.90                                                                            | 5.29  | 5.69              | 5.02              | 5.44  | 5.87              | 19.66             | 39.38                 | 3.8%                          | 43.07       | 1,025.79                | 20.22             | 38.95                 | 4.0%                       | 42.60       | 980.79                  |
| Baltimore, MD*     | 620,961   | 296,685          | 52,068              | 20                | 0.13                                 | 1.15                                                                            | 1.28  | 1.41              | 1.15              | 1.29  | 1.42              | 2.37              | 4.84                  | 4.8%                          | 5.30        | 101.84                  | 1.79              | 3.86                  | 6.5%                       | 4.22        | 59.58                   |
| Boston, MA*        | 617,594   | 272,481          | 31,956              | 16                | 0.23                                 | 1.49                                                                            | 1.62  | 1.76              | 1.65              | 1.81  | 1.98              | 1.37              | 3.14                  | 6.1%                          | 3.42        | 51.44                   | 1.25              | 2.93                  | 8.2%                       | 3.19        | 35.84                   |
| Seattle, WA*       | 608,660   | 308,516          | 54,347              | 30                | 0.09                                 | 1.80                                                                            | 2.05  | 2.30              | 2.25              | 2.66  | 3.08              | 2.40              | 6.86                  | 10.7%                         | 7.46        | 64.04                   | 2.24              | 6.48                  | 8.3%                       | 7.06        | 78.52                   |
| Washington, DC*    | 601,723   | 296,719          | 39,318              | 9                 | 0.13                                 | 0.48                                                                            | 0.53  | 0.58              | 0.49              | 0.55  | 0.60              | 1.85              | 3.80                  | 6.4%                          | 4.14        | 59.76                   | 1.66              | 3.57                  | 7.6%                       | 3.89        | 47.20                   |
| Nashville, TN*     | 601,222   | 272,622          | 317,983             | 33                | 0.11                                 | 6.37                                                                            | 7.25  | 8.14              | 6.44              | 7.36  | 8.27              | 79.79             | 118.78                | 4.2%                          | 129.46      | 2,832.21                | 80.32             | 113.98                | 4.3%                       | 124.52      | 2,632.47                |
| Denver, CO         | 600,158   | 285,797          | 98,964              | 16                | 0.12                                 | 3.55                                                                            | 5.06  | 6.57              | 3.53              | 5.02  | 6.51              | 0.38              | 1.45                  | 9.9%                          | 1.57        | 14.55                   | 0.36              | 1.33                  | 9.9%                       | 1.44        | 13.42                   |
| Louisville, KY*    | 597,337   | 270,928          | 219,016             | 28                | 0.10                                 | 2.71                                                                            | 2.96  | 3.21              | 2.76              | 3.01  | 3.27              | 31.13             | 47.93                 | 4.2%                          | 52.40       | 1,148.26                | 29.59             | 44.52                 | 5.2%                       | 48.61       | 864.38                  |
| Milwaukee, WI*     | 594,833   | 255,569          | 61,927              | 14                | 0.14                                 | 1.42                                                                            | 1.49  | 1.56              | 1.48              | 1.55  | 1.63              | 1.43              | 4.41                  | 7.9%                          | 4.81        | 55.84                   | 1.65              | 5.13                  | 7.9%                       | 5.60        | 64.78                   |
| Portland, OR*      | 583,776   | 265,439          | 92,855              | 19                | 0.11                                 | 3.99                                                                            | 5.27  | 6.56              | 4.07              | 5.41  | 6.76              | 8.87              | 16.84                 | 9.2%                          | 18.34       | 182.31                  | 8.79              | 17.15                 | 6.5%                       | 18.74       | 261.96                  |
| Las Vegas, NV      | 583,756   | 243,701          | 86,955              | 25                | 0.12                                 | 0.54                                                                            | 0.70  | 0.86              | 0.54              | 0.70  | 0.86              | 0.00              | 0.01                  | 17.2%                         | 0.01        | 0.08                    | 0.00              | 0.02                  | 10.5%                      | 0.02        | 0.14                    |
| Oklahoma City, OK  | 579,999   | 256,930          | 397,326             | 34                | 0.10                                 | 4.73                                                                            | 5.24  | 5.75              | 4.78              | 5.29  | 5.81              | 15.33             | 36.21                 | 4.4%                          | 39.41       | 820.27                  | 19.40             | 44.98                 | 5.0%                       | 49.07       | 899.91                  |
| Albuquerque, NM    | 545,852   | 239,166          | 121,308             | 17                | 0.13                                 | 3.97                                                                            | 8.23  | 12.49             | 3.95              | 8.23  | 12.51             | 0.11              | 0.77                  | 11.9%                         | 0.83        | 6.44                    | 0.17              | 1.06                  | 11.9%                      | 1.15        | 8.88                    |

## U.S. water use

National water use for 2000 to 2015 by North American Industry Classification Syste

| Year | <ol><li>Agriculture,</li></ol> | Forestry, F | Fishing, and H | Junting 21 | . Mining | 2211. Electric Power |
|------|--------------------------------|-------------|----------------|------------|----------|----------------------|
|      |                                |             |                | 0          | 0        |                      |

|      | 111. Crop112. AnimalProductionProduction(Irrigation)(Livestock) |         | 1125.<br>Aquaculture | Thermoelectric<br>Power (Once-<br>through cooling) |           |
|------|-----------------------------------------------------------------|---------|----------------------|----------------------------------------------------|-----------|
| 2000 | 137,064.3                                                       | 2,362.1 | 5,792.9              | 4,129.6                                            | 174,307.8 |
| 2005 | 125,219.2                                                       | 2,140.8 | 8,828.5              | 3,828.3                                            | 182,557.2 |
| 2010 | 113,929.3                                                       | 1,993.4 | 8,946.3              | 3,965.3                                            | 150,525.5 |
| 2015 | 116,611.7                                                       | 2,093.8 | 7,450.0              | 3,996.4                                            | 126,110.2 |

| Year | Population  | Gallons water use/capita |
|------|-------------|--------------------------|
| 2000 | 281,710,909 | 549,907                  |
| 2005 | 294,993,511 | 521,360                  |
| 2010 | 309,011,475 | 431,900                  |
| 2015 | 320,878,310 | 379,138                  |



## Land accounts

 Combined fine-grained presentation of land cover, use, value can support various analyses





| National Land Cover Database - 2016 - A | National Land Use Database - 2010 - B        |
|-----------------------------------------|----------------------------------------------|
| Open Water/Ice/Snow                     | Farms (NAICS 111)                            |
| Developed - Open Space                  | Livestock (NAICS 112)                        |
| Developed - Low Intensity               | Forestry and Logging (NAICS 113)             |
| Developed - Medium Intensity            | Fishing, Hunting (NAICS 114-115)             |
| Developed - High Intensity              | Mining (NAICS 21)                            |
| Barren (Rock/Sand/Clav)                 | Manufacturing (NAICS 31-33)                  |
| Ecrest (Deciduous/Evergreen/Mixed)      | Retail (NAICS 44-45)                         |
| Shrub/Scrub/Grassland/Herbaceous        | Transport warehousing (NAICS 48-49)          |
| Pasture/Hay                             | Offices (NAICS 51-56)                        |
| Pastorennay                             | Educational services (NAICS 61)              |
| Cultivated Crops                        | Health Care and Social Assistance (NAICS 62) |
| Wetlands (Woody/Emergent)               | Entertainment (NAICS 71)                     |
| Land Value - C                          | Cher Services (NAICS 81)                     |
| Price per Acre (2007-2011)              | Government (NAICS 92)                        |
| 645 - 183,154                           | Households (Dense Urban/Urban)               |
| 183,155 - 389,292                       | Households (Suburban)                        |
| 389,293 - 594,883                       | Households (Exurban/Rural)                   |
| 594,884 - 920,688                       | No NAICS equivalent N                        |
| 920,689 - 1,498,850                     | Census Tracts - A/B/C                        |
| <b>—</b> 1,498,851 - 2,621,191          |                                              |
| 2,621,192 - 4,568,596                   | 1. · · · · · · · · · · · · · · · · · · ·     |
| 4.568,597 - 10,479,792 0                | 2.25 4.5 9 Miles                             |

## Links to Essential ES Variables

| EESV class                 | Urban heat<br>mitigation                                                                                      | Urban rainfall interception                                                          | Air<br>purification                               | Recreational birdwatching                              | Crop<br>pollination                                 |
|----------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|
| Ecological supply          | Trees that evapotranspire water & provide shade                                                               | Trees that intercept excess rainfall                                                 | Trees and shrubs<br>that filter air<br>pollutants | Bird habitat quantity, quality, configuration          | Pollinator<br>habitat<br>quality &<br>configuration |
| Anthropogenic contribution | Planted trees in urban settings                                                                               | Planted trees in urban<br>settings, other natural<br>retention/detention<br>features | Planted trees in urban settings                   | Infrastructure & equipment needed for birdwatching     | Presence of<br>pollinator-<br>dependent<br>crops    |
| Demand                     | More comfortable<br>conditions during<br>warm/hot times of year                                               | Reduced urban<br>stormwater runoff                                                   | Air that's safe to breathe                        | Time outdoors<br>watching/ connecting<br>with wildlife | Pollination-<br>dependent<br>crops                  |
| Use                        | Reduced discomfort under<br>hot conditions (less air<br>conditioning need, greater<br>outdoor activity, etc.) | Using water safe for recreation, drinking, aquatic life, etc.                        | Breathing air                                     | Viewing birds                                          | Pollinated crops                                    |
| Instrumental values        | Thermal comfort                                                                                               | Clean water                                                                          | Air that's safe to breathe                        |                                                        | Nourishment                                         |
| Relational values          |                                                                                                               |                                                                                      |                                                   | Connection to nature                                   |                                                     |



System of Environmental Economic Accounting

### **Break-out group discussion questions**



#### Potential indicators on physical ecosystem services flows

| Physical ecosystem services flow indicators                                                                                                                                                                                                                                                                                                                                                                                                             | Further description                                                                                                                                                          | Spatial unit                 | Disaggregation                                                                                 | Unit of measurement                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                              |                                                                                                |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Piomass provisioning                                                                                                                                                         | Franktom                     | Ecosystem type:                                                                                |                                                       |
| Amount of biomass generated                                                                                                                                                                                                                                                                                                                                                                                                                             | services                                                                                                                                                                     | accounting area              | Type of hiomass                                                                                | Tonnes                                                |
| Water abstracted for use by                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              |                              |                                                                                                | Torrites                                              |
| household and industry (proxy                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              | Fcosystem                    |                                                                                                |                                                       |
| measure)                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water supply services                                                                                                                                                        | accounting area              | Ecosystem type                                                                                 | Cubic metres                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                              |                                                                                                |                                                       |
| Ionnes of carbon retained                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              | E                            |                                                                                                |                                                       |
| (captured and stored/trend in the                                                                                                                                                                                                                                                                                                                                                                                                                       | Global climate regulation                                                                                                                                                    | Ecosystem                    |                                                                                                | Tannac                                                |
| carbon sequestered)                                                                                                                                                                                                                                                                                                                                                                                                                                     | services                                                                                                                                                                     | accounting area              | Ecosystem type                                                                                 | Tonnes                                                |
| Toppos of airborno pollutants                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              | Franktom                     | Ecosystem type:                                                                                |                                                       |
| cantured (e.g. PM10: PM2 5)                                                                                                                                                                                                                                                                                                                                                                                                                             | Air filtration services                                                                                                                                                      | accounting area              | type of pollutant                                                                              | Tonnes                                                |
| Toppos of waterborne pollutants                                                                                                                                                                                                                                                                                                                                                                                                                         | An inclution services                                                                                                                                                        |                              | type of pollutant                                                                              | Tormes                                                |
| removed (e.g., chemical ovygen                                                                                                                                                                                                                                                                                                                                                                                                                          | Water nurification                                                                                                                                                           | Fcosystem                    | Ecosystem type                                                                                 |                                                       |
| demand) from wastewater                                                                                                                                                                                                                                                                                                                                                                                                                                 | services                                                                                                                                                                     | accounting area              | type of pollutant                                                                              | Tonnes                                                |
| Number of properties/ km of                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              |                              |                                                                                                |                                                       |
| coast/shoreline/riparian zone                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |                              |                                                                                                |                                                       |
| protected;                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              | Ecosystem                    |                                                                                                |                                                       |
| change in degree of risk                                                                                                                                                                                                                                                                                                                                                                                                                                | Flood mitigation services                                                                                                                                                    | accounting area              | Ecosystem type                                                                                 | Count/km                                              |
| Number of tourist/recreation                                                                                                                                                                                                                                                                                                                                                                                                                            | Pocreation related                                                                                                                                                           | Ecosystem                    |                                                                                                |                                                       |
| visits                                                                                                                                                                                                                                                                                                                                                                                                                                                  | services                                                                                                                                                                     | accounting area              | Ecosystem type                                                                                 | Count                                                 |
| household and industry (proxy<br>measure)<br>Tonnes of carbon retained<br>(captured and stored/trend in the<br>carbon sequestered)<br>Tonnes of airborne pollutants<br>captured (e.g., PM10; PM2.5)<br>Tonnes of waterborne pollutants<br>removed (e.g., chemical oxygen<br>demand) from wastewater<br>Number of properties/ km of<br>coast/shoreline/riparian zone<br>protected;<br>change in degree of risk<br>Number of tourist/recreation<br>visits | Water supply services   Global climate regulation services   Air filtration services   Water purification services   Flood mitigation services   Recreation-related services | Ecosystem<br>accounting area | Ecosystem type<br>Ecosystem type;<br>type of pollutant<br>Ecosystem type,<br>type of pollutant | Cubic metre<br>Tonnes<br>Tonnes<br>Tonnes<br>Count/km |

# Potential indicators on monetary ecosystem services flows account and ecosystem asset accounts

| Monetary indicators                                            | Further description                                                      | Spatial unit                 | Disaggregatio<br>n                                                             | Unit of measurement |
|----------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------|---------------------|
| Gross Ecosystem Product (GEP)                                  | The economic value added<br>of all ecosystem services<br>generated       | Ecosystem<br>accounting area | Ecosystem type,<br>ecosystem<br>services classes                               | Local currency      |
| Value of ecosystem services<br>linked to industry value added  | Value added of industries<br>with direct inputs of<br>ecosystem services | Ecosystem<br>accounting area | Ecosystem type                                                                 | Percentage          |
| Monetary ecosystem asset<br>value                              |                                                                          | Ecosystem<br>accounting area | Ecosystem type,<br>per capita by<br>administrative<br>areas, planning<br>areas | Local currency      |
| Ecosystem asset value as a percentage of total national wealth |                                                                          | Ecosystem<br>accounting area | Ecosystem type                                                                 | Percentage          |
| Cost of degradation                                            |                                                                          | Ecosystem<br>accounting area | Ecosystem type,<br>per capita by<br>administrative<br>areas, planning<br>areas | Local currency      |

#### Questions for discussion

#### - Prioritization of indicators and feasibility assessment

- One of the basic premise of the chapter is the importance of a limited set of indicators that are feasible for countries to compile. Do the proposed indicators satisfy the feasibility requirement?
- Another importance premise is relevance. Are the proposed indicators considered as highly relevant to address the current global/national concerns?
- It was also suggested that representativity is another important principle, where the proposed indicators should represent the attribute for the whole population. Are the proposed indicators considered as representative?
- One of the value of the SEEA EA is on linking the state of ecosystem with socio-economic information. Any additional suggested indicator from the core accounts that can amplify this linkage?
- Based on above, what are the suggestions on proposed indicators from the core accounts that are considered as priority for compilation and dissemination?
- In the light of our discussion what changes might be made to the draft text in the SEEA EA?

#### Further discussion questions

- What is the suggested frequency for the compilation and dissemination of the proposed indicators (seasonal, annual, longer time interval)?
- For indicators that measures change, how to determine the opening stock (last year or a reference year)?
- What is the appropriate scale for reporting (integrated national, EAA like catchment area, finer scale)?
- Could the proposed indicators be compiled using national data sources?
- What are the potential and limitation in using earth observation data for indicator compilation?