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Global ecosystem service modeling 
(InVEST, Co$ting Nature, and others)

Models based on LULC 

Challenges with LULC-based 
ecosystem service modeling:
• Categorical land-use proxies 

a diversity of functions
• Oversimplistic 

representation of ecosystem 
heterogeneity

• Difficult/time-consuming to 
parameterize



Global ecosystem service modeling 
opportunities for advancing integration with EO

Models based on EO 

Opportunities for EO-based 
ecosystem service modeling:
• Functional representation of 

ecological processes
• More accurate 

representation of ecosystem 
heterogeneity

• Easier/more replicable 
parameterization

Ramirez-Reyes et al. 2019 Science of the Total Environment 665: 1053-63



Carbon storage

EO-based approach
Avitabile et al. 2016
Baccini et al. 2012, 2017
Santoro et al. 2015

LULC-based approach

LULC Mg/ha
Cropland 5
Forest 126
Grassland 4
Mosaic forest shrub 88
Shrubland 50
Bare areas 1

IPCC Tier 1 Look-up Table
Carbon Zone 106

But how to project scenarios?
Regression between EO-derived biomass and other biophysical and socioeconomic variables 
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A typical LULC approach to modeling carbon storage is just to assign average values of carbon density by habitat type, such as is provided in the IPCC Tier 1 method. Even if there is some broad-scale differentiation like carbon “zones” that have different averages, this means all forest within a landscape gets an identical value. Now, thanks to a plethora of products mapping aboveground biomass using satellite data, we see how wrong that assumption is. Forests vary a huge amount in their carbon storage spatially, all ecosystems do. The only problem with using these EO datasets is scenario assessment – how can we project carbon in forests that aren’t currently forests. We’re building a global regression to predict carbon from other variables.



Bulk density of the fine earth 
fraction

116.36

Temperature Annual Range -115.22
Mean Temp. of Warmest Quarter 93.88
Precipitation Seasonality 64.41
Mean Diurnal Range -57.65
Total nitrogen content of soils 56.32
Annual Precipitation 51.46
Available soil water capacity -43.11
Area of nearby non-forest -42.77
Depth to bedrock 33.19
Terrain ruggedness index 30.4
Precipitation of Driest Month -28.1
Precipitation of Driest Quarter 27.07
Proportion of silt particles -26.72
Proportion of sand particles 25.99
Precipitation of Warmest Quarter -24.59
Soil pH -23.15
Cation exchange capacity -17.96
Mean Temp. of Driest Quarter 17.16
Wind speed -16.56
Slope -15.78
Accessibility to cities 15.18
Vol. fraction of coarse fragments -13.47
Mean Temp. of Wettest Quarter -11.54
Altitude -9.74
Soil organic carbon content 9.68
Proportion of clay particles 8.61
Livestock density -5.11
Min Temp. of Coldest Month 4.16
Organic carbon density of soils 3.69
Nightlights within 10 km -1.09
Population within 10 km -0.66
Nightlights on pixel -0.2

ll h d

Predictor variables Effect size Predicted aboveground biomass

Difference in accuracy for EO regression 
vs. original EO dataset Original better Regression bette
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The LASSO LARS regression we implemented selected this large set of variables from an even larger set, and you can see most of the important ones are climate and soil, but we also picked up edge effects, a negative effect on carbon storage from having more non-forest nearby. The pattern of predicted aboveground biomass is very similar to the EO datasets it’s trying to predict, but what’s exciting is that when compared to on-the-ground forest plot data, it’s even more accurate than the original EO product. The use of these additional predictors may help to smooth out some of the noise from the satellite data, meaning that this approach is not only useful for scenario assessment but to get more accurate estimates of current conditions. We’re using this model with companies who have made “no net deforestation” commitments– which will likely still involve some deforestation in their supply chains, so they’re interested in understanding where they can implement restoration projects to get the most carbon bang for their buck – and ensure that no net deforestation also means no net carbon loss.



• Process-based 
model (USLE)

• Routed within 
watershed

slope

precipitation (erosivity)

retention capacity (C-factor)

soil (erodibility)

LULC-
based 
C-factor

LULC-
based 
sediment 
export

NDVI-
based 
C-factor NDVI-

based 
sediment 
exportHigh retention

Low retention
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For sediment retention, several variables determine potential soil loss, which then is routed through the landscape to the stream and intercepted along the way, depending on the retention capacity of vegetation in the downslope path. The variable determining both potential soil loss on pixel and retention down-slope is the C-factor, or cover-factor, the capacity of vegetation to hold or trap sediment. This variable is typically set using a unique value for each land cover class. But again, the same land cover type might have very different retention efficiencies depending on the productivity or variability in productivity of the system– how much vegetation is actually there to intercept the soil or block the force of the rain. So we are developing a C-factor based on mean and standard deviation of the normalized difference vegetation index, NDVI. Comparing the two C-factors, you can see they have consistent overall spatial patterns, with the areas of lowest retention occurring in two patches in the north and one larger patch in the south, but the one derived from NDVI shows much higher spatial variation.�
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Sediment 
export rate

Sediment export 
modeled with LULC

Sediment export 
modeled with NDVI

Sediment Retention
LULC approach EO approach
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And this leads to very different estimation of sediment export across a landscape.  Sediment export based on NDVI, again, shows much higher spatial variations compared to using land cover categories to set C-factor. But what’s really important is which one is more accurate, and at the watershed scale, at least, NDVI (the green color in the graph at the bottom) comes closer to matching observed sediment export (in orange) than land-use (in yellow) every time. We’ve worked with watershed management agencies, hydropower companies, and public-private partnerships like water funds, who need to know where to invest in restoration or regeneration programs to reduce siltation of reservoirs. These different patterns of the highest sediment-exporting areas suggest very different strategies for intervention, and the next big step would be to link the type of modeling done in the carbon example shown previously, to be able to predict potential NDVI under restoration and regeneration scenarios.�



Challenges and opportunities

Challenges with LULC-based 
ecosystem service modeling:
• Categorical land-use proxies 

a diversity of functions
• Oversimplistic 

representation of ecosystem 
heterogeneity

• Difficult/time-consuming to 
parameterize

Opportunities for EO-based 
ecosystem service modeling:

• Functional representation of 
ecological processes

• More accurate representation of 
ecosystem heterogeneity

• Easier/more replicable 
parameterization
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