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Conceptual Model and Talk Outline
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Forest Ecosystem Services Case Study

How will alternative forest management and climate scenarios
affect multiple ecosystem services?
v Timber production
v Water quantity (peak & low flows)
Water quality (nutrients, temperature, sediments...)
Climate regulation (carbon sequestration, GHGs)
Habitat for fish & wildlife populations
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Recreational opportunities
Can all of these services be managed sustainably?

To what extent does emphasizing a particular service result in
tradeoffs with others?

Can models reliably address these questions at the spatial and
temporal scales required by resource managers & communities?



Premise: intermediate ecosystem services are strongly
regulated by hydrological and biogeochemical processes
that interact across multiple scales
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VELMA Ecohydrological Model

“Visualizing Ecosystem Land Management Assessments”
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Abdelnour, Stieglitz, Pan & McKane, 2011
Abdelnour, McKane, Stieglitz & Pan, 2013
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Interaction of Hydrological & Biogeochemical Processes:
* Hydrological: streamflow, ET, vertical & lateral flow, ...

* Biogeochemical: plant & soil C and N dynamics, transport
of NH,, NO;, DON, DOC, Hg and other contaminants

» Data requirements: daily temperature and precipitation,
DEM, soil, LULC including location & timing of disturbances
(fire, harvest, grazing, nutrient & contaminant inputs...)



VELMA Ecohydrological Model

“Visualizing Ecosystem Land Management Assessments”

Abdelnour, Stieglitz, Pan & McKane, 2011
Abdelnour, McKane, Stieglitz & Pan, 2013

Carbon
Nitrogen

Water
Cycling

Intermediate Ecosystem Services regulating

Food & fiber production

Water quality & quantity

Greenhouse gases (CO,, N,O, NO,)

Carbon sequestration (NEP)

Nitrogen sources & sinks (hot spots & hot moments)
Fish & wildlife habitat = Biodiversity models



ecosystems.mbl.edu/arc
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Forest Application: Blue River Watershed, Oregon

How will alternative forest management & climate scenarios
affect tradeoffs among key ecosystem services?

VELMA Study Area (190 km?)

| Upper Blue River Watershed
HJ Andrews Experimental Forest
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Visualization of VELMA Model Output




VELMA Validation Results

HJ Andrews Experimental Forest & LTER Site
Abdelnour et al. 2011 and 2013, Water Resources Research
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Simulation of alternative management scenarios

Upper Blue River Watershed

Succession Plan Intensive Plantation Northwest Forest Plan

(no harvest) (40-year harvest interval) (80-year harvest interval, with
some old-growth protected)
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Future Blue River landscapes for 4 alternative scenarios
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Trade-offs?

ecosystem

carbon stocks
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Ecosystem service tradeoffs for alternative
forest management scenarios, 2000 - 2200

Upper Blue River Watershed

o K N B I | B Timber production
% 0E | E =~ [ Ecosystem C stores
2 % ﬂ ﬂ Carbon sequestration (+ or-)
.g 0.0 3 75 | GHG sink (+) or source (-)
S: | | | O] Peak Flow
HQJ 0.5 7 E [] Stream Nitrogen (DIN) Load
§ o [7] Young Habitat (0-20 yr)
= [] Old Habitat (200+ yr)
§ 151 In development...
< | | : Stream temperature
20- Succession ' Intensive : Northwest | AMA Summer low flow
(no harvest) Plantation Forest Plan Stream fecal bacteria
Plan Plan Plan Stream sediments
Fish populations
Wildlife populations

14



15

Policy PRISM VELMA SMURF BlueSky Economic BenMAP
Manager (Climate) (Ecohydrology) (Fish Pop) (Air Quality) Models (Econ + Health)
TARGET SWMM HexSim FEGS.CS FEGS Report HYGIEA
(Human Pop) (Storm water) (Wildlife Pop) Card (Health)
_ : Ecosystem ; Benefit &
A Stressors, Ecological A Intermediate Goods & IR Economic A Human
¥ = Production -’.Ecosysteml GoodS |l Sonvices =p| Ecosystem Goodsf= 5 4 ton 4 Well-Being
Policies Functions & Services Production & Services Functions
\ Functions
T Adaptive
Management




16

Tight integration via a decision framework, e.g., ENVISION

(*existing or *planned ENVISION plugin)
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Closing thoughts about Biophysical Modeling and SEEA-EEA

e Spatial scale of accounting units: 30m grids have generally proven to be most useful
and readily obtainable for biophysical modeling in support of ecosystem service
assessments:

v This scale captures important hydro-biogeochemical interactions and is
computationally efficient for basin-scale applications

v" Smaller (10m) and larger (250m) scales are useful for specific purposes

e Spatio-temporal grids needed for simulation of alternative future scenarios:

v" Climate change scenarios: build spatio-temporal grids based on current 30-yr
mean climate grids (e.g., PRISM data) + IPCC climate scenario projections

v Land use scenarios: build grids based on population & demographic trends, and
alternative policies for urban growth boundaries, resource extraction, inputs of
fertilizers and toxics, etc.

e Recruit & train next generation of modelers! Global coordination through SEEA-EEA?

* Land cover is a key variable for biophysical modeling, but it must be combined with
other biophysical layers (topography, flow paths, soil properties, etc.) to be useful for
modeling ecosystem structure & function and intermediate ecosystem services.







ENVISION Decision Support Tool

http://envision.bioe.orst.edu/
John Bolte, Oregon State University
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Decision-makers managing the Yo
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Climate trajectories Alternative future " Human trajectories

scenarios assessment

Multi-agent decision modeling
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Landscape feadbacks

Hydrologic system Human system
« Snowpackmodeling « Land use regulations, policies

+ Upper basin hydrology - & :.!r;pitzr::’ :sghts and other
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Analysis and evaluation of adaptation and mitigation responses: policy, management and other interventions

John Bolte (http://oregonexplorer.info/willamette/Willamettehome)
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VELMA Team

EPA Western Ecology Division
Bob McKane, team lead — biogeochemistry, systems ecology
Allen Brookes — software architecture & development
Kevin Djang (CSC) — software development
Brad Barnhart — multi-objective optimization
Mike Papenfus — environmental economics
Jonathan Halama — GIS
Paul Pettus — GIS
Don Phillips — climate simulation

Georgia Institute of Technology
Marc Stieglitz — hydrology
Alex Abdelnour (McKinsey & Co.) — hydrology, biogeochemistry
Feifei Pan (Univ. of North Texas) — hydrology
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