

System of Environmental Economic Accounting

Air emission accounts

Sjoerd Schenau

Content

- Why compile air emission accounts?
- What are the air emission accounts?
- What is the scope of these accounts?
- How to compile air emission accounts?
- What can you do with these accounts?

Air emission accounts

Emissions to air are gaseous and particulate substances released to the atmosphere by establishments and households as a result of production, consumption and accumulation processes.

The **SEEA** air emissions account records the generation of air emissions by resident economic units, by type of substance.

They are fully coherent with SNA:

- Residence principle
- Allocation to industries (ISIC) and households
- → Data from the air emission accounts differ from the IPCC figures

Economic boundary with respect to air emissions

Some air emissions will occur when economic units undertake activity in other countries.

Consistent with the general definition of the economic boundary using the concept of residence, air emissions accounts for a nation will **exclude** emissions released within a national territory by non-residents (such as tourists and foreign transportation operations), whereas the emissions abroad of resident economic units will be **included**.

Air emission accounts also do **not** record the extent of the capture or embodiment of gases by the environment, for example, carbon captured in forests and soil.

Other scope issues

Included within the scope of air emissions in the air emissions account is a range of other emissions that are the direct result of economic production processes, namely, the emissions from cultivated livestock due to digestion (primarily methane), and emissions from soil as a consequence of cultivation or of other soil disturbances

Emissions from natural processes such as unintended forest and grassland fires and human metabolic processes which are not the direct result of economic production are excluded.

Typical components for groups of residuals (Table 3.2.4 SEEA-CF)

Emissions to air

Carbon Dioxide, Methane, Di-Nitrogen oxide, Nitrous oxides, Hydro fluorocarbons, Per fluorocarbons, Sulphur Hexafluoride, Carbon monoxide, Nonmethane volatile organic compounds, Sulphur dioxide, Ammonia, Heavy metals, Persistent organic pollutants, Particulates (e.g. PM10, dust)

Residuals from dissipative use of products

Unabsorbed nutrients from fertilisers, salt spread on roads

Dissipative losses

Abrasion (tyres/brakes), Erosion/corrosion of infrastructure (roads, etc.)

Classification for industries and households

Industry: NACE Rev.2 nomenclature

(statistical classification of economic activities in the European Community)

Households: COICOP (Classification of

Individual Consumption

by Purpose)

e.g. transport, heating, other

Other (accumulation): waste dumps

Emission types

1. Emissions from combustion

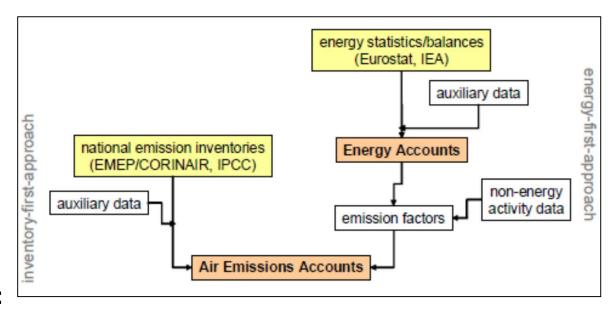
Combustion of fossil fuels for final demand Combustion of fossil fuels for production of electricity or heat

Combustion of biomass (short cyclic)

2. Emissions from conversion processes

Conversion from fossil fuels

Conversion from non-fossil fuels



The air emission account

Supply table for air emissions											
Generation of emissions										Accumulation	Total supply of emissions
		Industries				Households			Emissions from landfill)	
		Agnoulture	Mining	Manufacturing	Transport	Other	Transport	Heating	Other		
Ту	pe of substance						40.000.5	10.510.0			
/	Carbon dioxide	10 610.3	2 602.2		27 957.0	82 402.4	18 920.5	17 542.2	1 949.1	701.6	204 1 19.6
	Methane	492.0	34.1	15.8	8.0	21.9	2.4	15.5	1.7	222.0	806.3
/	Dinitrogen oxide	23.7		3.5	0.8	2.6	1.0	0.2	0.1	0.1	32.0
	Nitrous oxides	69.4	6.0	37.9	259.5	89.0	38.0	12.1	1.3	0.3	513.6
/	Hydroflourocarbons			0.3		0.4					0.7
	Perflourocarbons										
	Sulphur hexaflouride										
	Carbon monoxide	41.0	2.5	123.8	46.2	66.2	329.1	51.2	5.7	1.1	666.9
	Non-methane volatile organic compounds	5.2	6.5	40.0	16.4	27.2	34.5	29.4	3.2	0.9	163.3
1	Sulphur dioxide	2.7	0.4	28.0	62.4	8.1	0.4	0.4	0.1	0.0	102.5
\	Ammonia	107.9		1.7	0.2	0.9	2.3	11.4	1.2	0.2	125.9
1	Heavy metals										
1	Persistent organic pollutants										
\	Particulates (incl PM10, dust)	7.0	0.1	8.5	9.3	4.4	6.0	2.8	0.5	0.0	38.5

Compilation

Two approaches:

- 1. Energy-first-Approach:
 - → Compile Energy Accounts using energy balance / energy statistics
 - → Compile net energy accounts for air emissions
 - → Calculate emissions via:

Emission = Fuel use * EF (by fuel type)

2. Inventory first approach

Or Use and combine both and confront ...

Two main compilation issues

- 1. Correcting for residence principle→Adjustments for transportation
- 2. Assigning emissions to industry (NACE/ISIC)

→Assigning emissions to Industry and households

IPCC versus air emission accounts

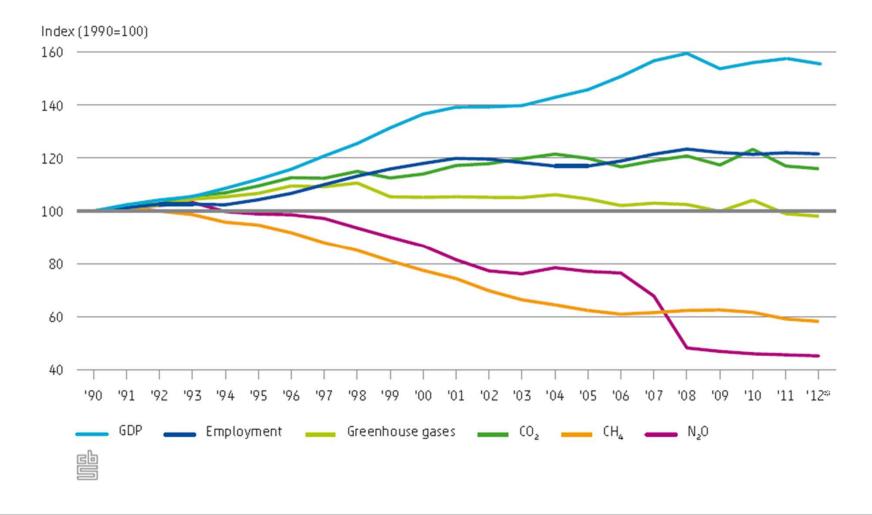
The **IPCC** (Intergovernmental Panel on Climate Change) has drawn up specific guidelines to estimate and report on national inventories of anthropogenic greenhouse gas emissions and removals

Differences between AEA and IPCC totals

- Adjustment for the **residence principle**: AEA follow the residence principle whereas national emission inventories follow more or less a territory principle.
- National totals are defined differently in national emission inventories regarding **international transport**, e.g. emissions from international air transport are excluded in UNFCCC inventory totals whereas they are partly included in national inventory totals.
- **Short cyclic CO2** is excluded from the IPCC totals

Bridge table

2001	2005	2010	2011	2012	2013*
Mton CO ₂ equivalents					
184	180	183	169	168	168
40	41	41	42	41	41
38	39	38	39	37	36
8	11	14	14	14	13
213	208	208	194	191	192
3	3	3	3	3	3
215	211	211	197	195	195
224	221	224	211	209	210
26	26	25	25	26	26
6	7	7	7	7	7
243	241	243	229	228	228
	184 40 38 8 213 3 215 224 26 6	Mton CO ₂ equivale 184 180 40 41 38 39 8 11 213 208 3 3 215 211 224 221 26 26 6 7	Mton CO ₂ equivalents 184 180 183 40 41 41 38 39 38 8 11 14 213 208 208 3 3 3 215 211 211 224 221 224 26 26 25 6 7 7	Mton CO ₂ equivalents 184 180 183 169 40 41 41 42 38 39 38 39 8 11 14 14 213 208 208 194 3 3 3 3 215 211 211 197 224 221 224 211 26 26 25 25 6 7 7 7	Mton CO2 equivalents 184 180 183 169 168 40 41 41 42 41 38 39 38 39 37 8 11 14 14 14 213 208 208 194 191 3 3 3 3 3 215 211 211 197 195 224 221 224 211 209 26 26 25 25 26 6 7 7 7 7

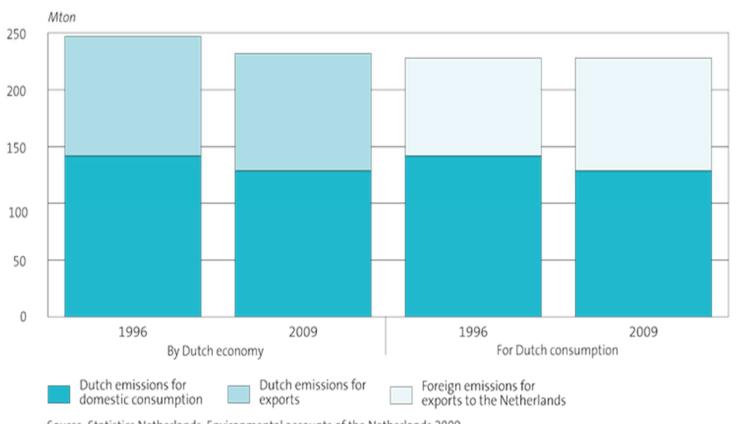


What can you do with air emission accounts?

- Key indicators
 - → Totals for the economy
 - → Emission and energy intensities by industry
 - → Decoupling
- 2030 Sustainable Development Agenda
 - → Goal 7 on Energy
- Analysis
 - → Decomposition analysis
 - →Input for footprint analysis
- Modelling and scenario analysis

Decoupling air emissions and GDP

Contributions by sector


5.6.2 Contributions to value added and environmental themes in 2012

Greenhouse gas emissions

2.2.1 Greenhouse gas emissions from production and consumption

Source: Statistics Netherlands, Environmental accounts of the Netherlands 2009.

EXERCISE

Calculate the CO₂ emissions based on the energy PSUT you have and the following information.

Typical emission factors for combustion of fuels are:

	Emissions factor ton
	CO ₂ /TJ
Coal	96
Gasoline	70
Fuel wood	110

Assume in addition, that from your IPCC emission inventory you get the information that 139 kilotonnes of CO_2 is released due to production processes, which chemically transform raw materials from one form to another. These processes take place within *Other industries*.

