Energy accounts

Ole Gravgård Statistics Denmark ogp@dst.dk

堂 STATISTICS DENMARK

Presentation

- What do we mean by energy accounts ?
- Why do we need energy accounts ?
- Example: (simplified) energy account for Denmark
- Some characteristics of energy accounts

 and how they differ from energy balances
- Summary: main points

What do we mean by energy accounts?

The term *energy accounts* is used to describe how energy data should be organised according to the System of Environmental Economic Accounting - Central Framework (SEEA) and the publication SEEA Energy

Energy accounts are developed in the tradition of the national accounts

Energy accounts are closely linked to - and usually based on - *energy statistics* and *energy balances* – but they do differ !

Why do we need energy accounts when we have energy balances ?

- Fully developed they include both monetary and physical information
- They can better be used for analysis of the interaction between economic activities and energy supply and use
- They can immediately be used as data inputs to e.g. macroeconomic modelling
- They are a excellent starting point for the developent of SEEA air emissions accounts

Example: A simplified¹⁾ energy account

Supply of energy - Denmark 2018

		Crude	Natural	Coal	Wind	Waste	Petrol,	Heat and
	Supply of energy	oil	gas		power,		gas oil,	electricity
	Unit: PJ (petajoule)				biomass,		etc.	
					etc.			
	Total supply of energy	463	328	66	271	18	1 016	291
<u>Natural</u> inputs	Renewable energy from the environment				66			
	Total output by industries	260	307		94		298	238
<u>Energy</u> products	Agriculture, forestry and fishing				66			
	Mining and quarrying	244	158					
	Manufacturing	17			11		298	
	Utility services		149		17			238
	Imports	203	20	66	83	2	718	53
<u>Residuals</u>	Supply of waste for energy							
	purposes				28	16		

¹⁾ The account is simplified in the sense that it does not show all types of energy flows

Use of energy - Denmark 2018

		Crude	Natural	Coal	Wind	Waste	Petrol,	Heat and
	Use of energy	oil	gas		power,		gas oil,	electricity
	Unit: PJ (petajoule)				biomass,		etc.	
					etc.			
Total use =								
total supply	Total use of energy	463	328	66	271	18	1 016	291
	Use by households		24		55		90	104
	Total use by industries	326	243	67	197	18	691	119
	Agriculture, forestry and fishing		2	0	4		23	8
National	Mining and quarrying		20	0	1	0	1	0
accounts'	Manufacturing	326	27	5	11	1	30	35
classification	Utility services		187	62	175	17	6	6
and categories	Construction		0		1		22	1
and categories	Trade and transport etc.		3		3		591	30
	Other industries		4		3		18	38
	Changes in inventories	40	- 5	- 1	5		- 18	
	Exports	97	62	0	14		252	35
Losses of energy	Distribution losses etc.		4					32

Some characteristics of energy accounts

Natural inputs, energy products and residuals makes it

possible to describe all flows of energy from extraction of energy resources from nature through production, trade and use of energy products and finally to the losses of energy to the environment

Energy accounts follows the *national accounts' definitions and classifications*

- in a few countries monetary energy accounts are even integrated with/a part of the national accounts

- Easy to establish links to economic analysis, e.g. coherent estimation of energy efficiencies for individual industries

Energy accounts include a full and explicit balancing of flows

Products:

Supply of petrol = Output of petrol by refineries + Imports of petrol

is equal to

Use of petrol = Intermediate consumption of petrol+ Household Consumption of petrol + Changes in inventories of petrol + Exports of petrol

Industries and households:

Energy inputs to an industry = Energy extracted or captured from the environment + intermediate consumption of energy

is equal to

Energy output from the industry = Outputs of energy products + Energy residuals/heat losses from the industry

Important differences between energy balances and energy accounts

Besides formats and classifications differences between energy accounts and balances are mainly related to the recording of *energy for transport:*

- Sectors versus industries
- Territory versus residence/economic activities

Sectors and industries - different allocation

Energy	bal	lan	ces
--------	-----	-----	-----

	PJ (petajoule)
Households	0
Services	0
Industry	0
Agriculture/Forestry/Fishing	0
Transport	106

Functional transport sector including *all* transport

Energy accounts

joule)		PJ (petajoule)			
	Households	30			
	Agriculture, forestry and fishin	g 3			
	Mining and quarrying	0			
	Manufacturing	5			
	Utility services	2			
	Construction	15			
	Trade and transport etc.	39			
	Other industries	12			
	Total	106			
		\mathbf{i}			
Activit indust includ	ry based ries and households ing	Transport <i>service</i> <i>industry</i>			
own account transport					

International transport (sea, air, land)

Energy balances:

Suppy and and use in the *territory*

- Exclude energy bought outside the territory

Energy accounts:

Supply and use by <u>residents</u> of the country

- Include energy bought outside territory by residents
- Exclude energy bought on territory by non-residents

Example: Danish energy consumption

Bunkering of energy by Danish ships, etc. outside Danish territory

Energy productivity based on energy balances vs. energy accounts

Energy productivity: GDP divided by industries' energy consumption

Main points

- Definitions, accounting structures and classifications in SEEA
 Energy are the same as in SEEA
 CF and the national accounts
- The use of the residence principle instead of the territory principle distinguishes SEEA
 Energy from energy statistics and energy balances – thus they may present a different picture of the development
- The **terminolog**y is sometimes different compared to energy statistics

- Energy accounts can be made in physical (joules) and monetary units (Euro, etc.), but usually starts with the physical
- Three main groups of energy is recorded in SEEA Energy: natural inputs, energy products and residuals
- Balancing principle: Supply = use inputs =outputs

