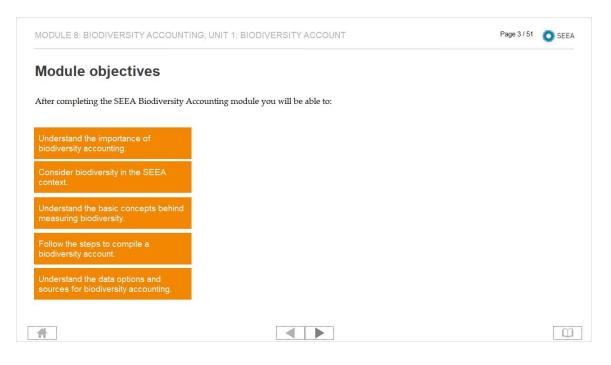
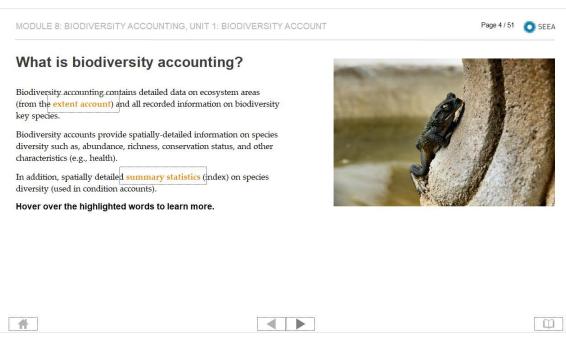
SEEA_EnvAcc_M8_EN

1. Module 1 - Introduction

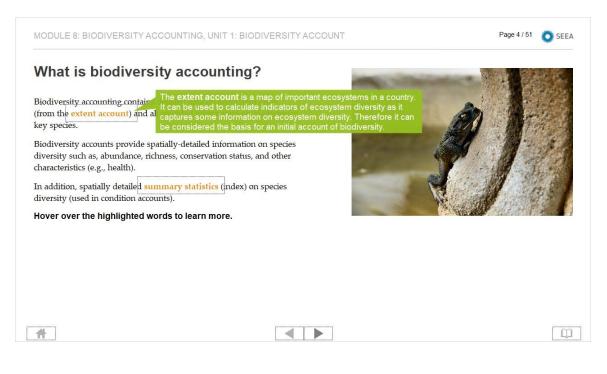
1.1 Welcome

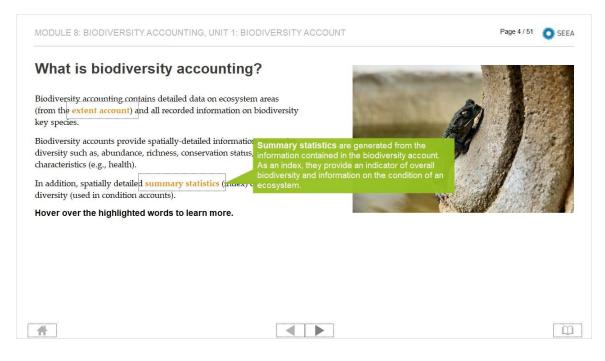

Module 8:		
Biodiversity accounti	ng	

Notes:

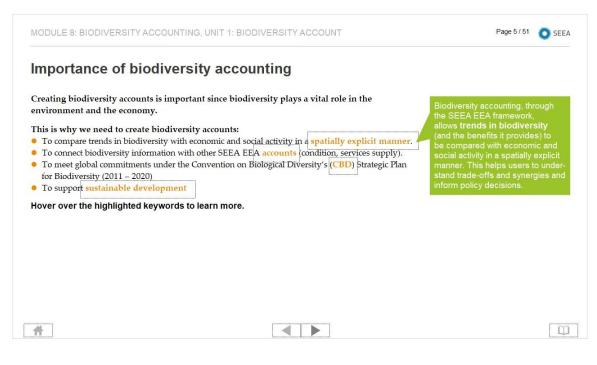

1.2 Module units

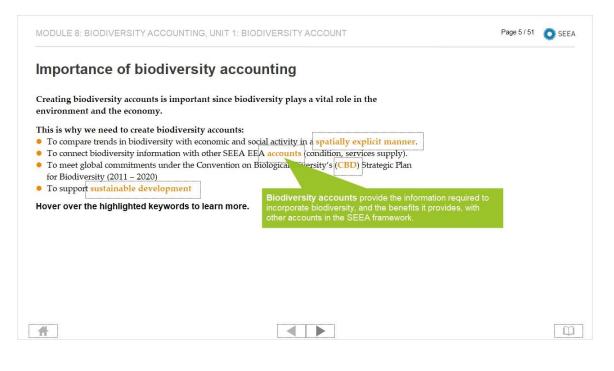
Module units	The biodiversity accounting modu We recommend completing these	le will take you through four units, units in order.	as listed below.
Unit 1: Biodiversity accounting	Unit 2: Compilers	Unit 3: Data providers	Unit 4: Review ● Quiz
 What is it? Why do we need it? What does it look like? 	 Basic concepts for measuring biodiversity. Steps for compiling biodiversity 	 Concepts Biodiversity accounting information uses. Data options, 	• Guiz • Summary
 Expertise and data required. 	accounts.	examples and issues.	


1.3 Module objectives

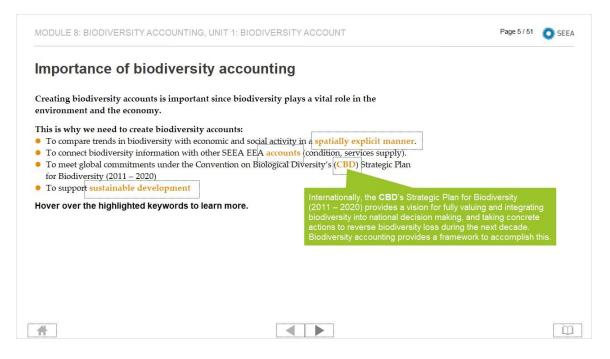

1.4 What is Biodiversity Accounting?

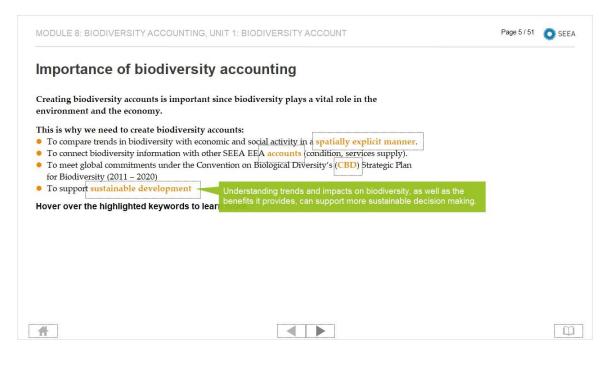
Explanation 1 (Slide Layer)

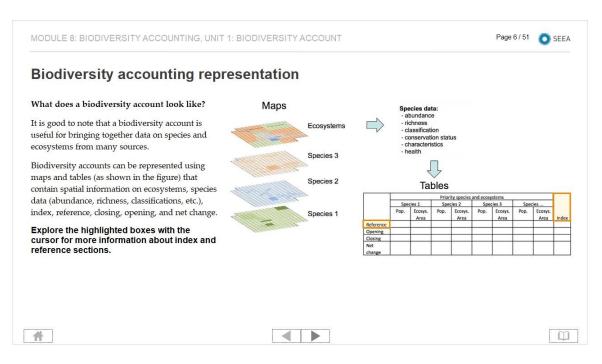

Explanation 2 (Slide Layer)


1.5 Importance of Biodiversity Accounting

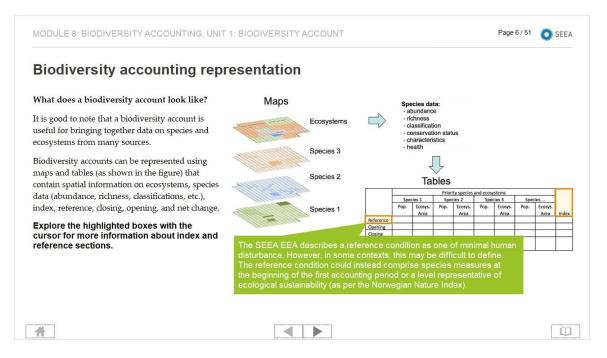
MODULE 8: BIODIVERSITY ACCOUNTING	G, UNIT 1: BIODIVERSITY ACCOUNT	Page 5 / 51	O SEEA
Importance of biodiversi	ity accounting		
Creating biodiversity accounts is importa environment and the economy.	ant since biodiversity plays a vital role in the		
• To connect biodiversity information with	conomic and social activity in a <mark>spatially explicit manner.</mark> other SEEA EE <mark>A accounts</mark> (condition, services supply). Convention on Biological Diversity's (CBD) Strategic Plan		

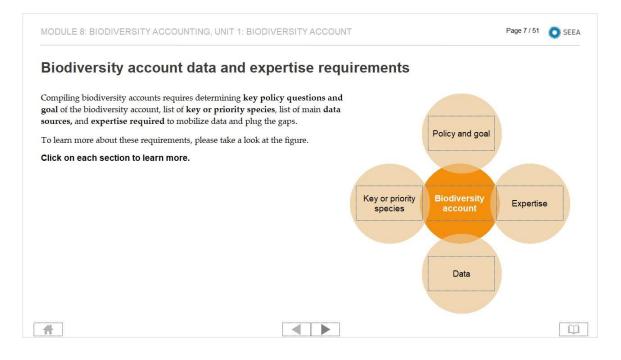

Explanation 1 (Slide Layer)


Explanation 2 (Slide Layer)

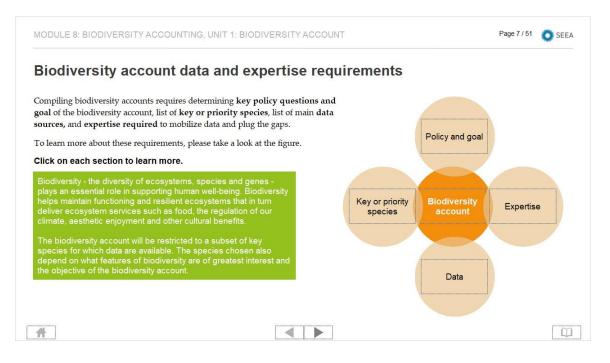

Explanation 3 (Slide Layer)

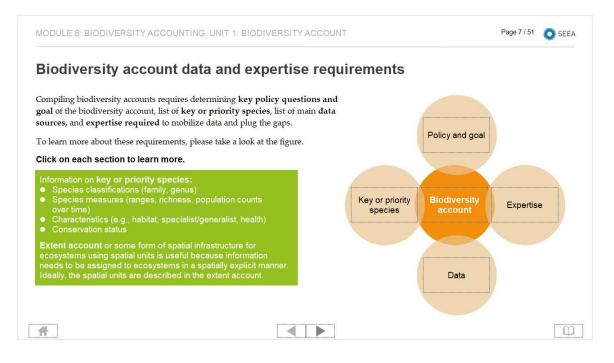
Explanation 4 (Slide Layer)

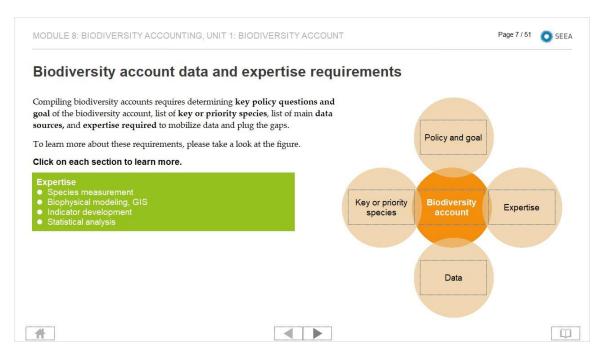

1.6 Biodiversity Accounting Representation

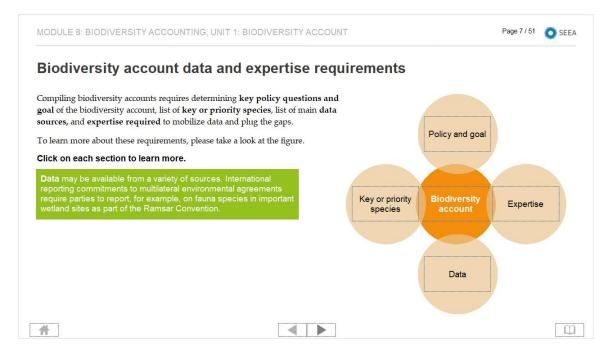

Explanation 1 (Slide Layer)

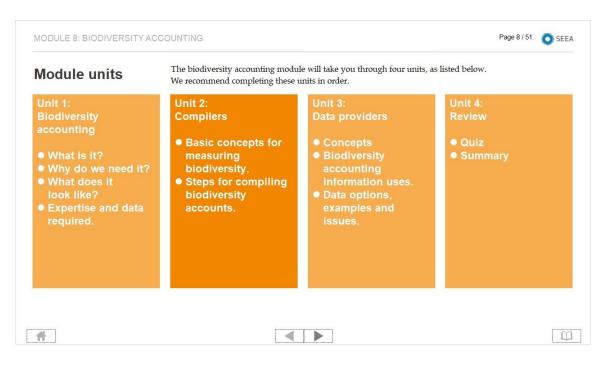
What does a biodiversity account look like? It is good to note that a biodiversity account is useful for bringing together data on species and ecosystems from many sources. Biodiversity accounts can be represented using maps and tables (as shown in the figure) that contain spatial information on ecosystems, species data (abundance, richness, classifications, etc.), index, reference, closing, opening, and net change. Explore the highlighted boxes with the cursor for more information about index and reference sections.	Maps Ecosystem Species 3 Species 2 Species 1		- a - ri - c - c The in bioo	diversi R	ion ion stat rovid ity to bles	es the	and ecosy	condit	ion a		nt.
---	--	--	---	--------------	--	--------	-----------	--------	-------	--	-----

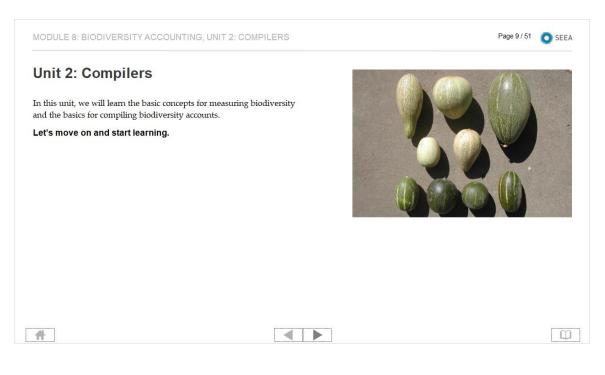

Explanation 2 (Slide Layer)

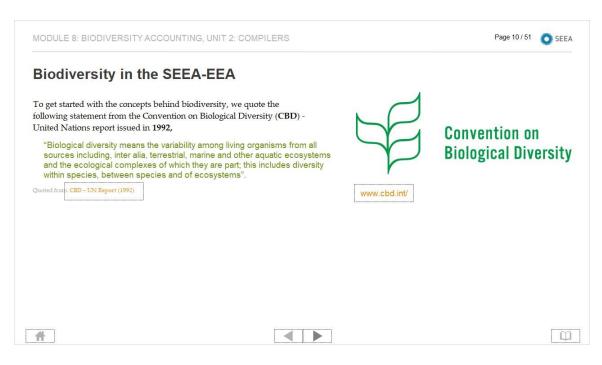

1.7 Biodiversity Account Data and Expertise Requirements


Explanation 1 (Slide Layer)


Explanation 2 (Slide Layer)


Explanation 3 (Slide Layer)


Explanation 4 (Slide Layer)


1.8 Module units

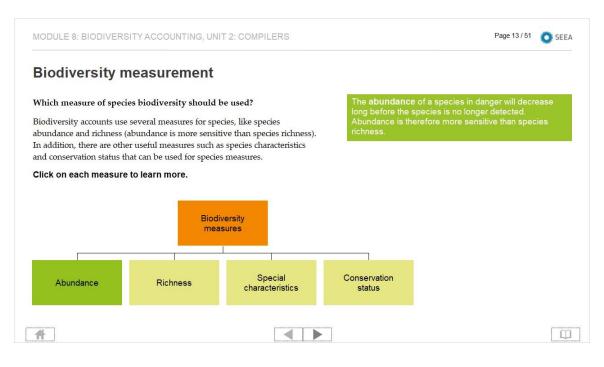
1.9 Unit 2

1.10 Biodiversity in the SEEA-EEA

1.11 Biodiversity in the SEEA-EEA

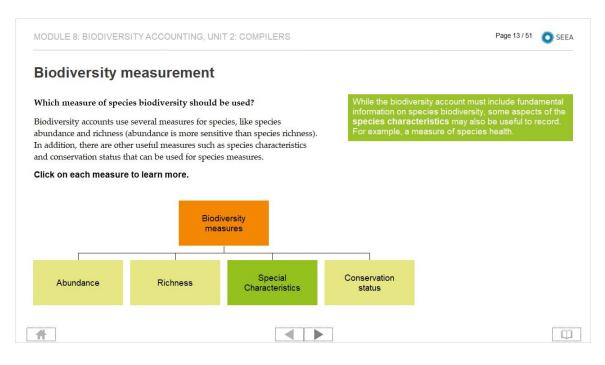
1.12 Biodiversity in the SEEA-EEA

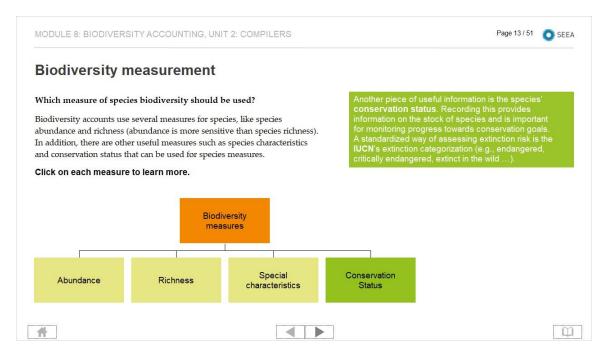
Explanation 1 (Slide Layer)

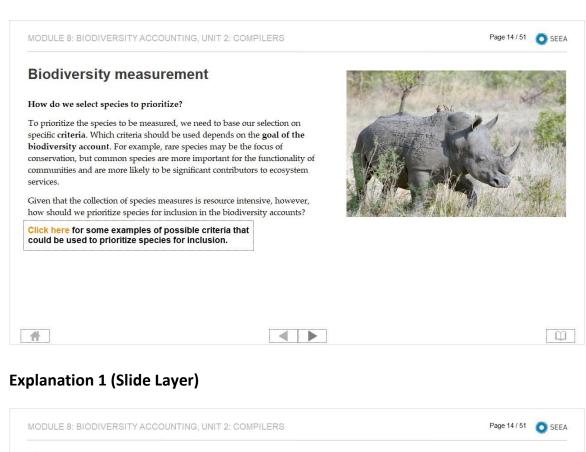

Explanation 2 (Slide Layer)

1.13 Biodiversity Measurements

MODULE 6. BIODIVERGI	TY ACCOUNTING, UNI	T 2: COMPILERS		Page 13 / 51	O SEEA
Biodiversity m	easurement				
Which measure of species	biodiversity should b	e used?			
Biodiversity accounts use se abundance and richness (ab In addition, there are other and conservation status tha Click on each measure to	oundance is more sensit useful measures such a t can be used for species o learn more. Biodi	ive than species richness). s species characteristics			
Abundance	Richness	Special characteristics	Conservation status		


Explanation 1 (Slide Layer)


Explanation 2 (Slide Layer)


Explanation 3 (Slide Layer)

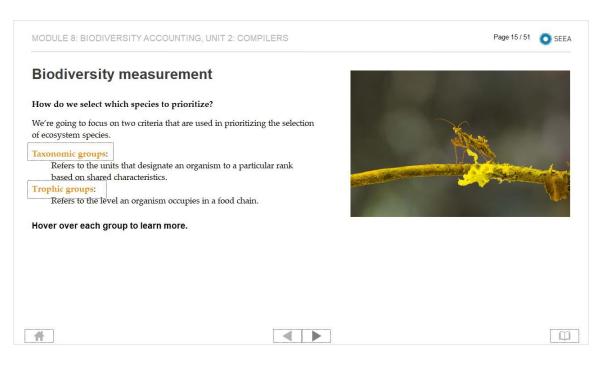
Explanation 4 (Slide Layer)

1.14 Biodiversity Measurements

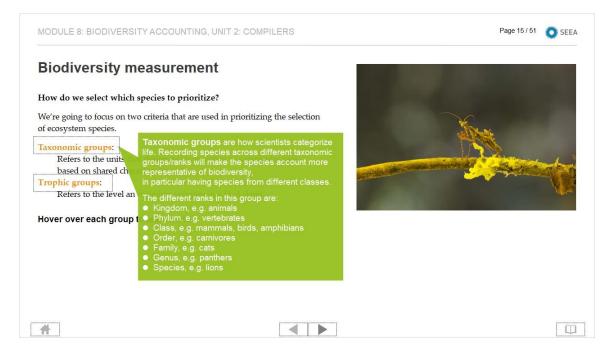
Biodiversity measurement

How do we select species to prioritize?

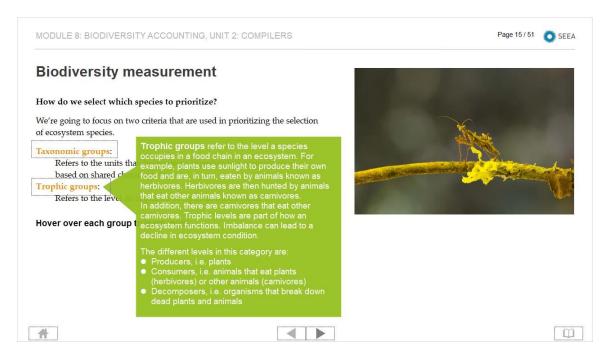
To prioritize the species to be measured, we need to base our selection on specific **criteria**. Which criteria should be used depends on the **goal of the biodiversity account**. For example, rare species may be the focus of conservation, but common species are more important for the functionality of communities and are more likely to be significant contributors to ecosystem services.

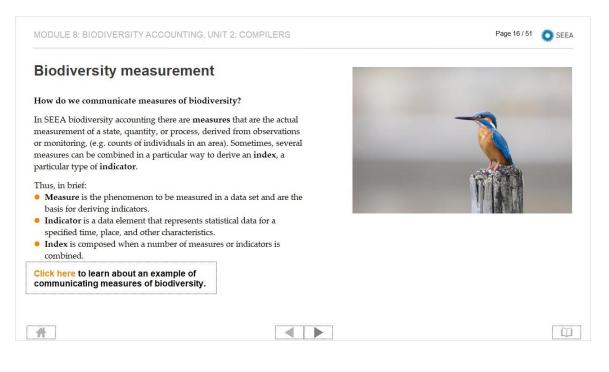

Given that the collection of species measures is resource intensive, however, how should we prioritize species for inclusion in the biodiversity accounts?

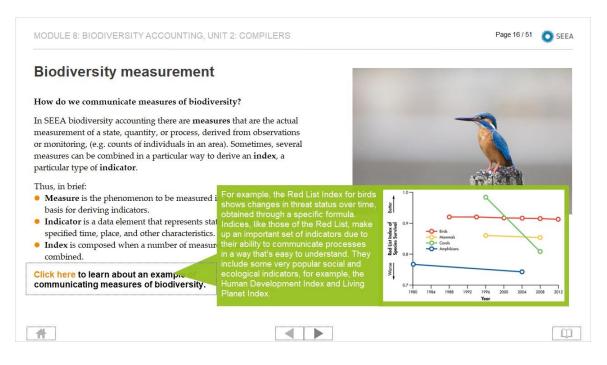
Click here for some examples of possible criteria that could be used to prioritize species for inclusion. Species that directly deliver particular ecosystem services (e.g. pollinators) Economically important species (e.g. game species related to tourism) Culturally important species (e.g. sacred plants/animals) Ecologically important species (e.g. keystone species) Endemic species Threatened species with a risk of extinction in the wild Species selected should represent different taxonomic and trophic groups (e.g. mammals, birds etc.)


m

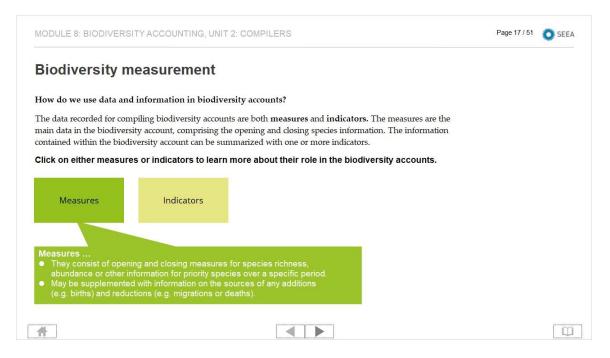
Published by Articulate® Storyline www.articulate.com

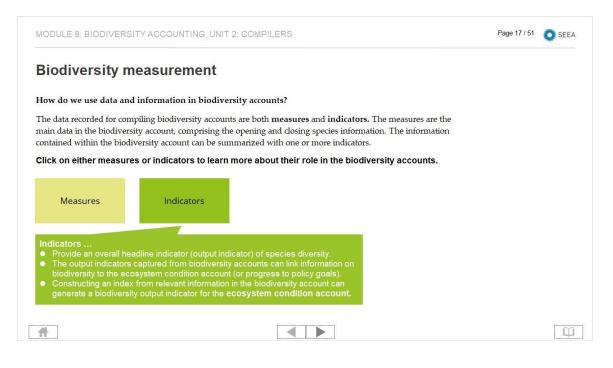

1.15 Biodiversity Measurements


Explanation 1 (Slide Layer)

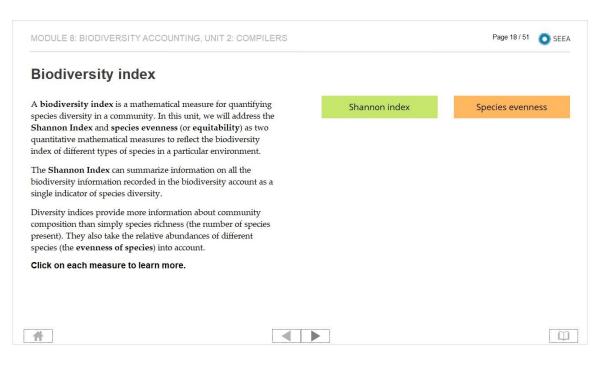

Explanation 2 (Slide Layer)

1.16 Biodiversity Measurements

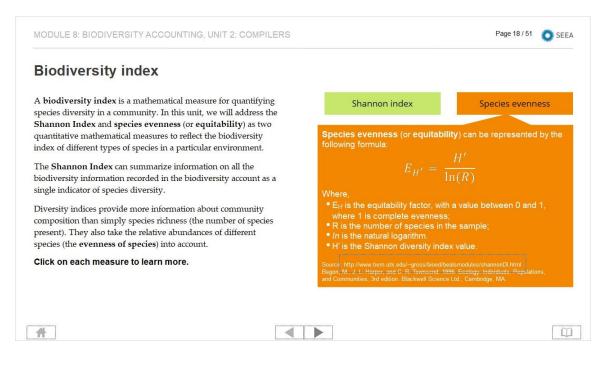

Explanation 1 (Slide Layer)


1.17 Biodiversity Measurements

MODULE 8: BIODIVERSIT	Y ACCOUNTING, UNIT 2	COMPILERS	Page 17 / 51	O SEEA
Biodiversity me	easurement			
How do we use data and i	nformation in biodivers	ity accounts?		
main data in the biodiversit	y account, comprising the	are both measures and indicators . The measures opening and closing species information. The infor narized with one or more indicators.		
Click on either measures	or indicators to learn m	ore about their role in the biodiversity accou	nts.	
Measures	Indicators			
4				m

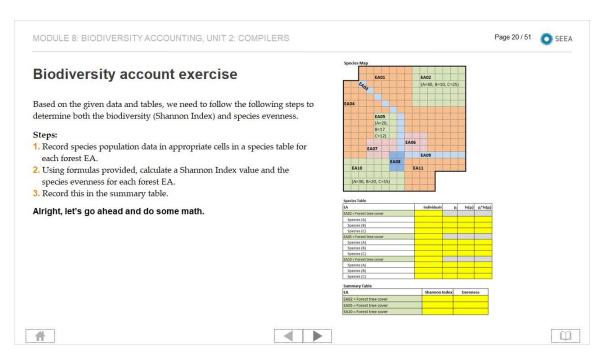

Explanation 1 (Slide Layer)

Explanation 2 (Slide Layer)


1.18 Biodiversity Index

Explanation 1 (Slide Layer)

Biodiversity index	
A biodiversity index is a mathematical measure for quantifying species diversity in a community. In this unit, we will address the Shannon Index and species evenness (or equitability) as two quantitative mathematical measures to reflect the biodiversity index of different types of species in a particular environment. The Shannon Index can summarize information on all the biodiversity information recorded in the biodiversity account as a single indicator of species diversity. Diversity indices provide more information about community composition than simply species richness (the number of species present). They also take the relative abundances of different species (the evenness of species) into account. Click on each measure to learn more.	Shannon index Species evenness The Shannon Index can be represented by the following formula: $\mu' = -\sum_{i=1}^{k} p_i \ln(p_i)$ Where, $\mu' = -\sum_{i=1}^{k} p_i \ln(p_i)$ Where, h' is the Shannon index; A is the total number of species in the sample; h is the natural logarithm; h is the proportion of individuals in the ith species in the sample. Maximum value depends on number of species = ln(R). Source: Shannon, C.E. (July and October 1948), "A mathematical theory of communication," Bell System Technical Journal, 27: 379-423 and 623-656. You can refer also to: http://www.them.utk.edu/~gross/bioed/bealsmodules/shannonDI Intril
*	


Explanation 2 (Slide Layer)

1.19 Biodiversity Account Exercise

VODULE 8: BIODIVERSITY ACCOUNTING, UNIT 2: COMPILERS								Page 19 / 5	1	O SEEA
Biodiversity account exercise	Species Map						1			
Biodiversity account exercise	EADS	EA01			02 =40, B=10	, C=25)				
et's practice calculating some of the information you have learned so far.	EA04									
n the following exercise we will determine both the biodiversity		EA05 (A=20,								
Shannon Index) and species evenness for three forest ecosystem assets (EAs).		B=17 C=12)		EA06						
or that, we will use the following data and tables as shown:		A07	EAOS	EA	.09					
Species map that depicts the Ecosystem Accounting Area (EAA) in study with its Ferentian Accel (EAC).	EA10	=20. C=15		EA11						
with its Ecosystem Assets (EAs). For the three forest EAs (EA02, EA05and EA10) details about the population of species is provided.		=20, C=15	9							
There are only three species analyzed (A, B and C) and their counts are	Species Table EA EA02 = Forest t	ee cover		1	ndividuals	P.	ln(p) p;*l	n(p)		
presented in the species map for the forest EAs. Species table that will be used for recording the information on each specie	Species (A) Species (B) Species (C)									
in each EA.	EA05 = Forest t Species (A) Species (8)	ree cover								
Summary table will be used to record the Shannon Index and the species evenness.	Species (C) EA10 = Forest 1 Species (A)	ree cover								
et's move on and learn about the steps required for the exercise.	Species (8) Species (C)									
er a move on and rearn about the steps required for the exercise.	Summary Tab EA	le			Shannon In	dex	Evenness			
	EA02 = Forest EA05 = Forest EA10 = Forest	tree cover								

1.20 Biodiversity Account Exercise

1.21 Biodiversity Account Exercise

(Drag and Drop, 10 points, 1 attempt permitted)

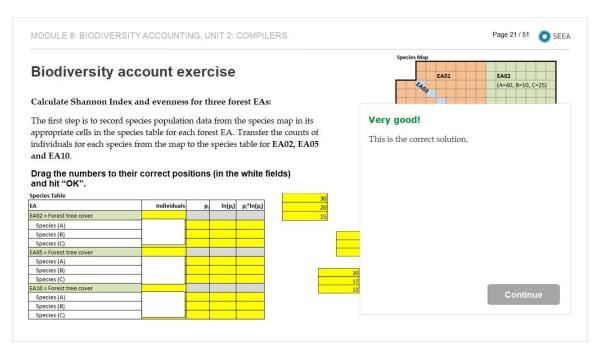
					Species N	Лар					
Biodiversity ad	count ex	orcise									
biodiversity ac	scount ex	CICISC					EA01		EA		
					C C	403		_	(A=	=40, B=10	0, C=25)
Calculate Shannon Index	and evenness	for three fo	arost FA	e.							
Calculate Shallion Inde/	cana eveniness	ior three it	JICST LA		EA04	1					
The first step is to record s	necies nonulation	n data from	the speci	ies man in its							
							EA05				
appropriate cells in the spe							(A=20,				
individuals for each species	s from the map t	o the specie	s table fo	or EA02, EA05			B=17				
and EA10.							C=12)		1		
una Litto.						ECC	_	EA	.06		
	eir correct posi	tions (in th	e white	fields)		EAC	7	EA		09	
Drag the numbers to the	eir correct posi	tions (in th	e white	fields)		EAC			EAI	09	
Drag the numbers to the and hit "OK".	eir correct posi	tions (in th	e white		EA10			EA08		09	
Drag the numbers to the and hit "OK".				30	EA10				EA	09	
Drag the numbers to the and hit "OK". Species Table	Pir correct posi	tions (in th		<u> </u>		5			EA	09	
Drag the numbers to the and hit "OK". Species Table EA EAO2 = Forest tree cover				30		5			EA	09	
Drag the numbers to the and hit "OK". Species Table EA EA02 = Forest tree cover Species (A) Species (B)				30 20 15	(A=30	5			EA	09	
Drag the numbers to the and hit "OK". Species Table EA EAQ2 = Forest tree cover Species (A)				<u> </u>	(A=30	5			EA	09	
Drag the numbers to the and hit "OK". Species Table EA EAO2 = Forest tree cover Species (A) Species (B) Species (C)				30 20 15	(A=30	5			EA	09	
Drag the numbers to the and hit "OK". Species Table EA EA02 = Forest tree cover Species (A) Species (B) Species (C)				30 20 15 40	(A=30	5			EA		
Drag the numbers to the and hit "OK". Species Table EA EAO2 = Forest tree cover Species (B) Species (B) Species (C) EAO5 = Forest tree cover				30 20 15 40	(A=30	5			EA	09	
Drag the numbers to the and hit "OK". Species Table EA EA02 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover Species (A)				30 20 15 40 25	(A=30	5			EA	09	
Drag the numbers to the and hit "OK". Species Table EA EA02 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover Species (A) Species (A)				30 20 15 40 10 25	(A=30	5			EA	09	
Drag the numbers to the and hit "OK". Species Table EA EAO2 = Forest tree cover Species (A) Species (C) EAO5 = Forest tree cover Species (A) Species (B) Species (B) Species (C)				30 20 15 40 10 25 25 20 17	(A=30	5			EA	09	
Drag the numbers to the and hit "OK". Species Table EA EA02 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover Species (A) Species (A) Species (B) Species (C) EA10 = Forest tree cover				30 20 15 40 10 25 25 20 17	(A=30	5			EA	09	

Drag Item	Drop Target
Picture 4	Rectangle 1
Picture 5	Rectangle 2
Picture 6	Rectangle 3

Drag and drop properties

Snap dropped items to drop target (Stack random)

Delay item drop states until interaction is submitted


Feedback when correct:

This is the correct solution.

Feedback when incorrect:

Take a look at the solution.

Very good! (Slide Layer)

Not quite right. (Slide Layer)

					facela				
					Specie	з мар			
Biodiversity a	iccount ex	ercise				EA01		EA02	
								(A=40, B=10	(-25)
						EADS		(A-40, B-10	, C=23)
Calculate Shannon Ind	ex and evenness f	or three fo	rest EAs						
					EA04				
The first step is to record	species population	data from t	he specie	s map in its					
appropriate cells in the sp	pecies table for each	forest EA.	Transfer	the counts of		EA05			
individuals for each speci						(A=20,			
	les nom the map to	o the species	table for	EA02, EA05		B=17			
and EA10.						C=12)		.	
							EA06		
	heir correct posit	ions (in the	e white f	elds)		EA07		F400	
	heir correct posit	ions (in the	e white f	elds)			A02	EA09	
and hit "OK".	heir correct posit	ions (in the	e white f		E FA		408 FA		
and hit "OK". Species Table	heir correct posit	ions (in the		30	EA		408 EA		
and hit "OK". Species Table EA							and the second second second		
and hit "OK". Species Table EA				30 20		10	and the second second second		
and hit "OK". Species Table EA EAO2 = Forest tree cover	Individuals			30 20	(A	110 =30, B=20, C=15)	and the second second second		
and hit "OK". Species Table EA EAO2 = Forest tree cover Species (A)	Individuals			30 20		110 =30, B=20, C=15)	and the second second second		
and hit "OK". Species Table EA CAO2 = Forest tree cover Species (A) Species (B) Species (C)	Individuals 40 10			30 20	Not quite rig	110 =30, B=20, C=15) ght.	EA		
and hit "OK". Species Table EA CAO2 = Forest tree cover Species (A) Species (B) Species (C)	Individuals 40 10			30 20	(A	110 =30, B=20, C=15) ght.	EA		
and hit "OK". Species Table EA EA EA02 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover	Individuals			30 20	Not quite rig	110 =30, B=20, C=15) ght.	EA		
and hit "OK". species Table SAO2 = Forest tree cover Species (A) Species (C) Species (C) SAO5 = Forest tree cover Species (A)	Individuals 40 30 30 30 30 30 30 30 30 30			30 20 15	Not quite rig	110 =30, B=20, C=15) ght.	EA		
and hit "OK". species Table EA BAD2 = Forest tree cover Species (A) Species (C) EAOS = Forest tree cover Species (A) Species (B) Species (C)	Individuals 40 10 25 7 20 20 17			30 20 15	Not quite rig Take a look a	110 =30, B=20, C=15) ght.	EA	11	
and hit "OK". species Table EA BAD2 = Forest tree cover Species (A) Species (C) EAOS = Forest tree cover Species (A) Species (B) Species (C)	Individuals 40 25 25 10 10 10 10 10 10 10 10 10 1			30 20 15	Not quite rig Take a look a	110 =30, B=20, C=15) ght.	EA		ue
Species (B) Species (C) EA05 = Forest tree cover Species (A) Species (B) Species (C) EA10 = Forest tree cover	Individuals			30 20 15	Not quite rig Take a look a	110 =30, B=20, C=15) ght.	EA	11	ue

1.22 Biodiversity Account Exercise

(Drag and Drop, 10 points, 1 attempt permitted)

					Species M	Иар				
Biodiversity a	ccount ex	ercis	2							
Diouiversity a	count ex	cicio	-				A01		EA02	
						403			(A=40	, B=10, C=25
Good, now you have tran	storred the individ	tual count	50 W0 D	and to sum the		, i				
									+	
total number of individua				10 respectively.	EA04	-		+		
For example for EA02, th	e total sum is 40 +	- 10 + 25 =	75.				A05			
							A=20,		+	
Drag the total of individ	duals for each E/	A to their f	ields and	d hit "OK".			=17		+	
								1 1 1		1-1-1-
							=12)			
							=12)	EA06		
						EAO		EA06		
								EA06	EA09	
Sneries Table						EAO		.08		
	Individuals	pi In(j	p _i *In(p _i)		EA10	EAO		.08	EA09	
EA	Individuals	pi In(j	b _i) p _i *In(p _i)	_	75	EA0	EA	.08		
Species Table EA EA02 = Forest tree cover Species (A)	Individuals	pi In(j	p _i) p _i *ln(p _i)	65	75	EAO	EA	.08		
EA EA02 = Forest tree cover		pi In(j	₽,) p,*In(p,)	65	75	EA0	EA	.08		
EA EA02 = Forest tree cover Species (A)	40	p, In())) p;*in(p,)		75	EA0	EA	.08		
EA EA02 = Forest tree cover Species (A) Species (B) Species (C)	40 10	p, In())) p;*in(p,)	65 49	75	EA0	EA	.08		
EA EA02 = Forest tree cover Species (A) Species (B)	40 10	p, in()	b) p,*in(p,)		75	EA0	EA	.08		
EAO EAO2 = Forest tree cover Species (A) Species (B) Species (C) EAO5 = Forest tree cover	40 40 10 25	p, in()	b) p;*in(p)		75	EA0	EA	.08		
EA EAO2 = Forest tree cover Species (A) Species (B) Species (C) EAO5 = Forest tree cover Species (A)	40 40 25 20	pi in(j	b.) p,*In(p,)		75	EA0	EA	.08		
FA EA02 = Forest tree cover Species (A) Species (C) EA05 = Forest tree cover Species (A) Species (B) Species (C)	40 10 25 20 17 12	p; in()	b) pi*In(pi)		75	EA0	EA	.08		
EA EA02 = Forest tree cover Species (A) Species (B) EA05 = Forest tree cover Species (A) Species (B)	40 10 25 20 17	p, in()	λ) p,*In(p) 		75	EA0	EA	.08		
EA EA02 = Forest tree cover Species (A) Species (B) EA05 = Forest tree cover Species (A) Species (A) Species (B) Species (C) EA10 = Forest tree cover	40 10 25 20 17 12	pi in(j	b) p,*in(p) 		75	EA0	EA	.08		

Drag Item	Drop Target
Picture 4	Rectangle 1
Picture 5	Rectangle 2
Picture 6	Rectangle 3

Drag and drop properties
Snap dropped items to drop target (Stack random)
Delay item drop states until interaction is submitted

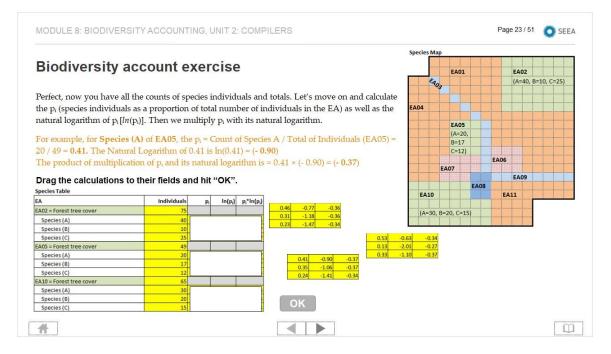
Feedback when correct:

This is the correct solution.

Feedback when incorrect:

Take a look at the solution.

Very good! (Slide Layer)


Biodiversity a				Species Map EA01	EA02 (A=40, B=10, C=25
Good, now you have tran total number of individu					
For example for EA02, th				Very good!	
Drag the total of indivi				This is the correct solution	2
200	Individuals	n In(n)	n*in(n)		
EA	Individuals	p _i In(p _i)	pi*In(pi)		
EA EA02 = Forest tree cover		p _i In(p _i)	pi*ln(pi)	_	
EA EA02 = Forest tree cover Species (A)	40	p _i In(p _i)	p;*In(p;)	_	
EA EA02 = Forest tree cover	40 10	p _i In(p _i)	p;*in(p;)	_	
EA EA02 = Forest tree cover Species (A) Species (B) Species (C)	40	pi In(pi)	p;*In(p;)	49	
EA EA02 = Forest tree cover Species (A) Species (B) Species (C)	40 10	p, in(p,)	p;*in(p;)	49	
EA EAO2 = Forest tree cover Species (A) Species (B) Species (C) EAO5 = Forest tree cover	40 40 25 25	p, In(p,)	p,*in(p,)	49	
EAQ EAQ2 = Forest tree cover Species (A) Species (B) Species (C) EAQ5 = Forest tree cover Species (A)	40 40 25 20	p, in(p,)	p,=In(p,)	49	
EA EA02 = Forest tree cover Species (A) Species (B) EA05 = Forest tree cover Species (A) Species (B) Species (C)	40 40 25 25 20 17	p, in(p,)	p,*In(p,)	49	
Species (B) Species (C) EA05 = Forest tree cover Species (A) Species (B)	40 40 25 25 20 17	p, in(p,)	p,*In(p,)	49	Continue
EA EA02 = Forest tree cover Species (A) Species (B) EA05 = Forest tree cover Species (A) Species (B) Species (B) Species (C) EA10 = Forest tree cover	40 10 25 20 17 12 12	p, in(p)	p,"In(p,)	49	Continue

Not quite right. (Slide Layer)

.		-			Species Ma				
Biodiversity a	iccount ex	ercise				EA01		EA02	
					EAQ				10. C=25)
					- 70	,			
Good, now you have trar	nsferred the individ	lual counts,	so we need to sum the						
total number of individua	als $(A + B + C)$ for	EA02, EA05	and EA10 respectively.		EA04				
For example for EA02, th									
a or country to for Erioz, th	to to the other is to 1					EA05			
Drag the total of individ	duals for each EA	A to their fie	lds and hit "OK".			(A=20,			
						B=17			
						C=12)	EA06		
							EAUB		
						FAOT			
						EA07		EA09	
							A08	EA09	
<u>.</u>					EA10		A08	EA09	
<u>.</u>	Individuals	p _i In(p _i)	p,*In(p,)						
EA	Individuals	p _i In(p _i)	p;*In(p)	_	EA10				
EA		p _i In(p _i)	p,*ln(p) 65	_	EA10	E			
EA EA02 = Forest tree cover Species (A) Species (B)	75	p, In(p,)		_	EA10 (A=30,	B=20, C=15)			
EA EA02 = Forest tree cover Species (A) Species (B) Species (C)	75 40	p, In(p,)	65	Not qu	EA10	B=20, C=15)			
EAO2 = Forest tree cover Species (A) Species (B) Species (C) EAO5 = Forest tree cover	75 40 10 25 49	pi In(pi)		9	EA10 (A=30, ite right	B=20, C=15)	E		
FA EAO2 = Forest tree cover Species (A) Species (B) Species (C) EAO5 = Forest tree cover Species (A)	75 40 25 25 49 20	pi In(pi)	65	9	EA10 (A=30, ite right	B=20, C=15)	E		
FA Species (A) Species (B) Species (C) SAOS = Forest tree cover Species (A) Species (B)	75 40 10 25 9 20 17	pi ln(p.)	65	9	EA10 (A=30, ite right	B=20, C=15)	E		
FA EA02 = Forest tree cover Species (A) Species (C) EA05 = Forest tree cover Species (A) Species (B) Species (C) Species (C)	75 40 25 25 49 20	p, In(p)	65	9	EA10 (A=30, ite right	B=20, C=15)	E		
EA EA02 = Forest tree cover Species (A) Species (B) EA05 = Forest tree cover Species (A) Species (A) Species (B) Species (C) EA05 = Forest tree cover Species (C) Species (C) EA05 = Forest tree cover	75 40 25 49 20 20 17 20 17 20 65	p, In(p,)	65	9	EA10 (A=30, ite right	B=20, C=15)	E	A11	
EA EA02 = Forest tree cover Species (A) Species (C) EA05 = Forest tree cover Species (A) Species (C) EA10 = Forest tree cover Species (C) EA10 = Forest tree cover Species (A)	75 40 25 49 20 177 12 5 65 30	p, In(p,)	65	9	EA10 (A=30, ite right	B=20, C=15)	E		inue
Species (8) Species (C) EA05 = Forest tree cover Species (A) Species (B) Species (C) EA10 = Forest tree cover	75 40 25 49 20 20 17 20 17 20 65	p, In(p)	65	9	EA10 (A=30, ite right	B=20, C=15)	E	A11	inue

1.23 Biodiversity Account Exercise

(Drag and Drop, 10 points, 1 attempt permitted)

Drag Item	Drop Target
Picture 4	Rectangle 1
Picture 5	Rectangle 2
Picture 6	Rectangle 3

Drag and drop properties

Snap dropped items to drop target (Stack random)

Delay item drop states until interaction is submitted

Feedback when correct:

This is the correct solution.

Feedback when incorrect:

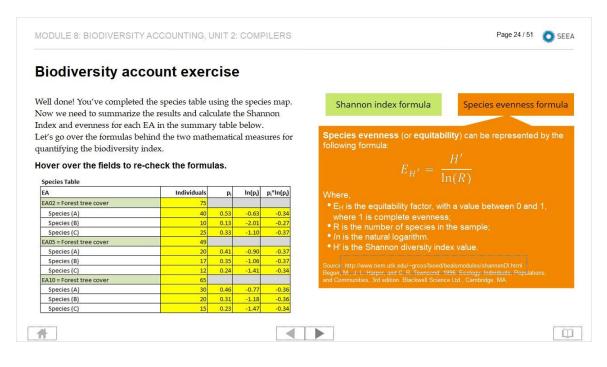
Take a look at the solution.

Very good! (Slide Layer)

						Contraction of the Contraction of the			
						Species Map			
Biodiversity a	account ex	vercise	x						
Biodiversity a		ACTO DE					01	EA02	
						EAO3		(A=40, B	=10, C=25)
Perfect, now you have all	the counts of spe	cios individu	tals and to	tals I of's move on an	d calculato				
	and the second sec						1 1 1		
the p _i (species individuals	······				Very go	Ibo			
natural logarithm of p _i [ln	(p _i)]. Then we mu	ultiply pi wit	h its natur	al logarithm.	very gu	ou:			
				-	This is the	e correct solu	ti ana		
For example, for Species	(A) of EA05, the	$p_i = Count o$	f Species A	A / Total of Individuals	(1105 15 01	e correct solu	0011.		
		4							
	al Logarithm of (41 is 10(0 41	1) - (- 0.90						
	ral Logarithm of 0)					
The product of multiplication $149 = 0.41$.)					
The product of multiplica	ation of p _i and its	natural logar	ithm is = ()					
The product of multiplica	ation of p _i and its	natural logar	ithm is = ()					
The product of multiplica Drag the calculations t	ation of p _i and its	natural logar	ithm is = ()					
The product of multiplica Drag the calculations t Species Table	ation of p _i and its	natural logar d hit "OK".	ithm is = () 0.41 × (- 0.90) = (- 0.3 7)					
The product of multiplica Drag the calculations t Species Table EA	ation of p _i and its to their fields an	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (- 0.37) 0.46 -0.77 -0.36					
The product of multiplica Drag the calculations t Species Table EA	ation of p _i and its to their fields an Individuals	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (+ 0.37) 0.46 -0.77 -0.36 0.31 -1.18 -0.36					
The product of multiplica Drag the calculations t Species Table EA EAO2 = Forest tree cover	to their fields an Individuals	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (- 0.37) 0.46 -0.77 -0.36					
The product of multiplica Drag the calculations t Species Table EA EAQ2 = Forest tree cover Species (A)	to their fields an	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (+ 0.37) 0.46 -0.77 -0.36 0.31 -1.18 -0.36					
The product of multiplica Drag the calculations t species Table EA EAO2 = Forest tree cover Species (A) Species (B) Species (C)	to their fields an Individuals	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (+ 0.37) 0.46 -0.77 -0.36 0.31 -1.18 -0.36					
The product of multiplica Drag the calculations t species Table EA EAO2 = Forest tree cover Species (A) Species (B) Species (C)	to their fields an Individuals 75 40 10 25	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (- 0.37) 0.46 -0.77 -0.36 0.33 -1.18 -0.36 0.23 -1.47 -0.34					
The product of multiplica Species Table EA EAO2 = Forest tree cover Species (A) Species (B) Species (C) EAO3 = Forest tree cover	ation of p _i and its to their fields an Individuals 75 40 10 25 49	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (- 0.37) 0.46 -0.77 -0.36 0.31 -1.18 -0.36 0.25 -1.47 -0.34 0.41 -0.90 -0.37					
The product of multiplica Drag the calculations to species Table EA EAO2 = Forest tree cover Species (A) Species (C) EAO5 = Forest tree cover Species (A)	ation of p _i and its i to their fields an individuals 40 25 49 20 20	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (- 0.37) 0.46 -0.77 -0.36 0.31 -1.18 -0.36 0.23 -1.47 -0.34 0.41 -0.90 -0.37 0.35 -1.06 -0.37					
The product of multiplicz Species Table EA EAO2 = Forest tree cover Species (A) Species (C) EAO3 = Forest tree cover Species (A) Species (A) Species (B) Species (C) Species (C)	ation of p _i and its a to their fields an individuals 75 40 10 25 49 20 17	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (- 0.37) 0.46 -0.77 -0.36 0.31 -1.18 -0.36 0.25 -1.47 -0.34 0.41 -0.90 -0.37					
The product of multiplicz Species Table EA EAO2 = Forest tree cover Species (A) Species (C) EAO3 = Forest tree cover Species (A) Species (A) Species (B) Species (C) Species (C)	ation of p ₁ and its : to their fields an Individuals 23 40 10 25 49 20 17 12	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (- 0.37) 0.46 -0.77 -0.36 0.31 -1.18 -0.36 0.23 -1.47 -0.34 0.41 -0.90 -0.37 0.35 -1.06 -0.37				Contin	iue
The product of multiplica Drag the calculations t Species Table EA EAD = Forest tree cover Species (A) Species (B) Species (C) EADS = Forest tree cover Species (B) Species (B) Species (B) Species (C) EA10 = Forest tree cover	ation of p _i and its i to their fields an individuals 40 25 40 25 49 20 77 12 65	natural logar d hit "OK".	ithm is = 0) 0.41 × (- 0.90) = (- 0.37) 0.46 -0.77 -0.36 0.31 -1.18 -0.36 0.23 -1.47 -0.34 0.41 -0.90 -0.37 0.35 -1.06 -0.37				Contin	ue

Not quite right. (Slide Layer)

									Species N	lap			
Diadivaraity	a a a unt a		inc										
Biodiversity a	account e	xer	cise	2						EA01		EA02	
									E	103		(A=40, E	3=10, C=25
										03			
Perfect, now you have al	ll the counts of spe	ecies ir	ndivid	uals and	l totals. I	Let's move	on and o	alculate					Ĭ
the p _i (species individual	ls as a proportion	of total	l num	ber of in	dividua	ls in the EA	A) as we		EA04				
natural logarithm of pill													
natural logaritant of pilts	(Pi)]. Then we he	udpiy	P1 WI	11 113 114	105	and an.				EA05			
For example, for Species	(A) of EAO5 the	n = C	ount	of Spocio	A / To	tal of India	riduale ((A=20,			
+ · · ·		-		-		our or many	icitiais (B=17			
20 / 49 = 0.41. The Natu	ral Logarithm of 0	.41 is	$\ln(0.4)$	(-0.	90)					C=12)			
The product of multiplic	ation of p _i and its	natura	1 logar	rithm is	= 0.41 ×	(-0.90) = (-0.90)	- 0.37)				EA06		
The product of multiplic	ation of p _i and its	natura	l loga	rithm is	= 0.41 ×	(- 0.90) = (- 0.37)			EA07	EA06		
	-		-		= 0.41 ×	(- 0.90) = (- 0.37)					EA09	
Drag the calculations	-		-		= 0.41 ×	(-0.90) = (- 0.37)				EA08		
Drag the calculations Species Table	-	d hit '	'ок".		= 0.41 ×	(-0.90) = (- 0.37)		EA10		EA08	EA09	
Drag the calculations Species Table EA	to their fields an		-		0.46	-0.77 -0.3	86				EA08		
Drag the calculations Species Table EA	to their fields an	d hit ' Pi	'OK".	pi*in(bi)	0.46	-0.77 -0.3 -1.18 -0.3	3 <u>6</u>				EA08		
Drag the calculations Species Table EA EA02 = Forest tree cover	to their fields an	d hit '	'ок".		0.46	-0.77 -0.3	3 <u>6</u>				EA08		
Drag the calculations Species Table EA EAQ2 = Forest tree cover Species (A)	to their fields an Individuals 75 40	0 hit ' Pi 0.53	'OK". In(Pi)	pi*In(pi)	0.46	-0.77 -0.3 -1.18 -0.3	3 <u>6</u>	Not quite	(A=30), B=20, C=15)	EA08		
Drag the calculations Species Table EA EA22 = Forest tree cover Species (A) Species (B)	to their fields an Individuals 75 40 10	0 hit ' Pi 0.53 0.13	'OK". In(p _i) -0.63 -2.01	p;*ln(p;) -0.34 -0.27	0.46	-0.77 -0.3 -1.18 -0.3	3 <u>6</u>	111	(A=30), B=20, C=15)	EA08		
Drag the calculations Species Table EA EAO2 = Forest tree cover Species (A) Species (B) Species (C)	to their fields an Individuals 75 40 100 25	0 hit ' Pi 0.53 0.13	'OK". In(p _i) -0.63 -2.01	p;*ln(p;) -0.34 -0.27	0.46 0.31 0.23	-0.77 -0.3 -1.18 -0.3 -1.47 -0.3	36 36 34	111	(A=30), B=20, C=15)	EA08		
Drag the calculations Species Table EA EAO2 = Forest tree cover Species (A) Species (B) Species (C) EAO5 = Forest tree cover	to their fields an Individuals 75 40 10 25 49	0.53 0.13 0.33	"OK". In(p,) -0.63 -2.01 -1.10	p;*ln(p;) -0.34 -0.27 -0.37	0.46	-0.77 -0.3 -1.18 -0.3 -1.47 -0.3	-0.37	111	(A=30), B=20, C=15)	EA08		
Drag the calculations species Table EA EA02 = Forest tree cover Species (A) Species (C) EA05 = Forest tree cover Species (A)	to their fields an Individuals 75 40 10 25 49 20	0 hit ' Pi 0.53 0.13 0.33 0.33	"OK". In(p _i) -0.63 -2.01 -1.10	p;*ln(p,) -0.34 -0.27 -0.37 -0.37	0.46	-0.77 -0.3 -1.18 -0.3 -1.47 -0.3 0.41 -0.90 0.35 -1.06	-0.37 -0.37	111	(A=30), B=20, C=15)	EA08		
Drag the calculations Species Table EA Species (A) Species (B) Species (C) Species (A) Species (A) Species (B) Species (A) Species (A) Species (C) Species (B) Species (C)	to their fields an Individuals 75 40 10 25 49 20 25 49 20 17	0 hit *	*OK". In(p _i) -0.63 -2.01 -1.10 -0.90 -1.06	p;*ln(p,) -0.34 -0.27 -0.37 -0.37 -0.37	0.46	-0.77 -0.3 -1.18 -0.3 -1.47 -0.3	-0.37	111	(A=30), B=20, C=15)	EA08		
Drag the calculations Species Table EA Species (A) Species (B) Species (C) Species (A) Species (A) Species (B) Species (A) Species (A) Species (C) Species (B) Species (C)	to their fields an individuals 75 40 10 25 40 40 10 25 49 49 20 17 12	0 hit *	*OK". In(p _i) -0.63 -2.01 -1.10 -0.90 -1.06	p,*ln(p,) -0.34 -0.27 -0.37 -0.37 -0.37 -0.34	0.46	-0.77 -0.3 -1.18 -0.3 -1.47 -0.3 0.41 -0.90 0.35 -1.06	-0.37 -0.37	111	(A=30), B=20, C=15)	EA08		nue
Species (B) Species (C) EA05 = Forest tree cover Species (A) Species (B) Species (C) EA10 = Forest tree cover	to their fields an Individuals 75 40 25 49 25 49 20 77 12 2 65	P 0.53 0.13 0.33 0.41 0.35 0.24	*OK". In(p _i) -0.63 -2.01 -1.10 -0.90 -1.06 -1.41	p;*ln(p,) -0.34 -0.27 -0.37 -0.37 -0.37	0.46	-0.77 -0.3 -1.18 -0.3 -1.47 -0.3 0.41 -0.90 0.35 -1.06	-0.37 -0.37	111	(A=30), B=20, C=15)	EA08	411	nue


1.24 Biodiversity Index

Biodiversity acco	ount exer	cise	5					
Vell done! You've completed the Now we need to summarize the Now we need to summarize the Now we need to summarize the Now	ne results and cal	culate t	he Sha	nnon	Shannon index formula	Species	evenness fo	ormula
ndex and evenness for each E .et's go over the formulas behi		-						
0		ematic	ai meas	sures for				
mantifying the biodiversity in	dev							
quantifying the biodiversity inc								
uantifying the biodiversity ind lover over the fields to re-c		ılas.						
•		ılas.						
lover over the fields to re-c		ılas. _{Pi}	In(p _i)	pi*ln(pi)				
lover over the fields to re-c	heck the formu		In(p _i)	pi*ln(pi)	Summary Table			
lover over the fields to re-c species Table EA	heck the formu		In(p,) -0.63	pi*ln(pi) -0.34	Summary Table	Shannon Index	Evenness	1
lover over the fields to re-C Species Table EA EA02 = Forest tree cover	heck the formu Individuals	Pi			EA	Shannon Index	Evenness]
Species Table EA EAQ = Forest tree cover Species (A)	heck the formu Individuals 75 40	Pi 0.53	-0.63	-0.34		Shannon Index	Evenness	
Species Table EA EA02 = Forest tree cover Species (A) Species (B)	heck the formu	Pi 0.53 0.13	-0.63 -2.01	-0.34	EA EA02 = Forest tree cover	Shannon Index	Evenness	
For each or each of the fields to re-c Species Table EA EA02 = Forest tree cover Species (A) Species (B) Species (C)	heck the formu	Pi 0.53 0.13	-0.63 -2.01	-0.34	EA EA02 = Forest tree cover EA05 = Forest tree cover	Shannon Index	Evenness	
EA EA202 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover	heck the formu	Pi 0.53 0.13 0.33	-0.63 -2.01 -1.10	-0.34 -0.27 -0.37	EA EA02 = Forest tree cover EA05 = Forest tree cover	Shannon Index	Evenness	
Aver over the fields to re-c Species Table EA EA02 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover Species (A)	theck the formut Individuals 75 40 30 25 49 20	Pi 0.53 0.13 0.33 0.41	-0.63 -2.01 -1.10 -0.90	-0.34 -0.27 -0.37 -0.37	EA EA02 = Forest tree cover EA05 = Forest tree cover	Shannon Index	Evenness	
Vover over the fields to re-c Species Table EA EA02 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover Species (A) Species (A) Species (B)	theck the formu Individuals 75 40 10 225 49 20 20 17	Pi 0.53 0.13 0.33 0.41 0.35	-0.63 -2.01 -1.10 -0.90 -1.06	-0.34 -0.27 -0.37 -0.37 -0.37	EA EA02 = Forest tree cover EA05 = Forest tree cover	Shannon Index	Evenness	
Aver over the fields to re-c Species Table EA EA02 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover Species (A) Species (B) Species (C)	Individuals Individuals 40 40 25 49 20 17 17 12	Pi 0.53 0.13 0.33 0.41 0.35	-0.63 -2.01 -1.10 -0.90 -1.06	-0.34 -0.27 -0.37 -0.37 -0.37	EA EA02 = Forest tree cover EA05 = Forest tree cover	Shannon Index	Evenness	
EA EA EA2 = Forest tree cover Species (A) Species (A) Species (C) EA03 = Forest tree cover Species (A) Species (A) Species (A) Species (B) Species (B) Species (B) Species (C) EA03 = Forest tree cover Species (C) EA10 = Forest tree cover Species (C)	theck the formular Individuals 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P. 0.53 0.13 0.33 0.41 0.35 0.24	-0.63 -2.01 -1.10 -0.90 -1.06 -1.41	-0.34 -0.27 -0.37 -0.37 -0.37 -0.34	EA EA02 = Forest tree cover EA05 = Forest tree cover	Shannon Index	Evenness	

Explanation 1 (Slide Layer)

Biodiversity acc	ount exer	LISC			
ell done! You've completed	the species table 1	ising th	ne spec	ies map.	Shannon index formula Species evenness formula
ow we need to summarize t	the results and cald	ulate t	he Sha	nnon	Shannon nack formala Species evenness formala
ndex and evenness for each I	EA in the summar	v table	helow		
over over the fields to re-					$H' = -\sum_{i=1} p_i \ln(p_i) \label{eq:H}$ Where,
EA	Individuals	pi	In(p _i)	pi*ln(pi)	 H' is the Shannon index;
	75				 R is the total number of species in the sample;
Species (A)	40	0.53	-0.63	-0.34	• In is the natural logarithm; shared and a second se
Species (A) Species (B)	10	0.13	-2.01	-0.27	• p _i is the proportion of individuals in the ith species in the
Species (A) Species (B) Species (C)	10 25				
Species (A) Species (B) Species (C) EA05 = Forest tree cover	10 25 49	0.13	-2.01 -1.10	-0.27 -0.37	 p, is the proportion of individuals in the ith species in the sample.
Species (A) Species (B) Species (C) EAO5 = Forest tree cover Species (A)	10 25 49 20	0.13	-2.01	-0.27	• p _i is the proportion of individuals in the ith species in the
Species (A) Species (B) Species (C) EA05 = Forest tree cover	10 25 49	0.13 0.33 0.41	-2.01 -1.10 -0.90	-0.27 -0.37 -0.37	 p_i is the proportion of individuals in the ith species in the sample. Maximum value depends on number of species = ln(R).
Species (A) Species (B) Species (C) EAOS = Forest tree cover Species (A) Species (B) Species (C)	10 25 49 20 17	0.13 0.33 0.41 0.35	-2.01 -1.10 -0.90 -1.06	-0.27 -0.37 -0.37 -0.37	 p, is the proportion of individuals in the ith species in the sample.
Species (A) Species (B) Species (C) EAOS = Forest tree cover Species (A) Species (B) Species (C)	10 25 49 20 17 12	0.13 0.33 0.41 0.35	-2.01 -1.10 -0.90 -1.06	-0.27 -0.37 -0.37 -0.37	p, is the proportion of individuals in the ith species in the sample. Maximum value depends on number of species = In(R). Source: Strannon, C.E. (July and October 1948), "A mathematical theory of communication," Bell System Technical Journal, 27: 379–423 and 623–656
Species (B) Species (C) EADS = Forest tree cover Species (A) Species (B) Species (C) EALD = Forest tree cover	10 25 49 20 17 12 65	0.13 0.33 0.41 0.35 0.24	-2.01 -1.10 -0.90 -1.06 -1.41	-0.27 -0.37 -0.37 -0.37 -0.34	p, is the proportion of individuals in the ith species in the sample. Maximum value depends on number of species = In(R). Source: Shannon, C.E. (July and October 1948), "A mathematical theory of communication," Bell System Technical Journal, 27: 379–423 and 623–656

Explanation 2 (Slide Layer)

1.25 Biodiversity Account Exercise

(Drag and Drop, 10 points, 1 attempt permitted)

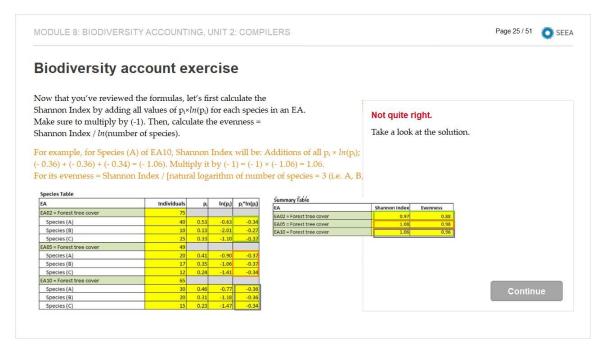
Biodiversity a	ccount e	xer	cise	•					
Jow that you've reviewe	d the formulas, l	et's fir	st calcu	ilate the	e Shann	on index forn	nula	Species evenness	formula
hannon Index by adding	all values of p.×	$ln(p_i)$ f	for each	h specie		ion mack form	lana	species eveniness i	ionnula
lake sure to multiply by		uate th	le even	uiess =					
hannon Index / ln(numb	per of species).								
	· · · · · · · · · · · · · · · · · · ·	1			× (- 1.06) = 1.06. ber of species = 3 (i.e. A, E	8, C)] = 1.06 / lr	n(3) = 0.96		
	· · · · · · · · · · · · · · · · · · ·	1	rithm o		ber of species = 3 (i.e. A, E Summary Table			1	1.00
or its evenness = Shanno Species Table	on Index / [natur	al loga	rithm o	of num	ber of species = 3 (i.e. A, E Summary Table EA	3, C)] = 1.06 / lr	n(3) = 0.96 Evenness	0.97	1.08
or its evenness = Shanno species Table EA	on Index / [natur	al loga	rithm o	of num	ber of species = 3 (i.e. A, E Summary Table EA EA02 = Forest tree cover			0.97	1.08
Species Table EA EA02 = Forest tree cover	on Index / [natur Individuals 75	al loga	In(p _i)	of num	ber of species = 3 (i.e. A, E Summary Table EA EAQ = Forest tree cover EAQ5 = Forest tree cover			0.97	1.08
or its evenness = Shanno Species Table EA EAQ2 = Forest tree cover Species (A)	Index / [natur Individuals 75 40	al loga pi 0.53	In(p) -0.63	of num p,*In(p) -0.34	ber of species = 3 (i.e. A, E Summary Table EA EA02 = Forest tree cover				1.06
or its evenness = Shanno Species Table EA EAO2 = Forest tree cover Species (A) Species (B)	n Index / [natur Individuals 75 40 10	al loga Pi 0.53 0.13	In(p) -0.63 -2.01	of num p;*In(p) -0.34 -0.27	ber of species = 3 (i.e. A, E Summary Table EA EAQ = Forest tree cover EAQ5 = Forest tree cover				
or its evenness = Shanno Species Table EA EAO2 = Forest tree cover Species (A) Species (B) Species (C)	Index / [natur	al loga Pi 0.53 0.13	In(p) -0.63 -2.01 -1.10	of num p;*In(p) -0.34 -0.27	ber of species = 3 (i.e. A, E Summary Table EA EAQ = Forest tree cover EAQ5 = Forest tree cover	Shannon Index	Evenness	0.98	1.06
or its evenness = Shanno species Table EA EA22 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover	Index / [natur	Pi 0.53 0.13 0.33 0.41 0.35	-0.63 -2.01 -1.10 -0.90 -1.06	of num p,*in(p,) -0.34 -0.27 -0.37 -0.37 -0.37	ber of species = 3 (i.e. A, E summay Table EA EA2 = Forest tree cover EA10 = Forest tree cover EA10 = Forest tree cover	Shannon Index	Evenness	0.98	1.06
Or its evenness = Shanne EA EA2 = Forest tree cover Species (A) Species (B) Species (C) EA3 = Forest tree cover Species (A)	n Index / [natur ndividuals 40 20 20 17 12 20	Pi 0.53 0.13 0.33 0.41	In(p) -0.63 -2.01 -1.10	of num p,*in(p,) -0.34 -0.27 -0.37 -0.37	ber of species = 3 (i.e. A, E summay Table EA EA2 = Forest tree cover EA10 = Forest tree cover EA10 = Forest tree cover	Shannon Index	Evenness	0.98	1.06
or its evenness = Shanno Species Table EA EAQ2 = Forest tree cover Species (A) Species (C) EAQ5 = Forest tree cover Species (A) Species (B)	n Index / [natur 1000 100 100 100 100 100 100 100 100 10	P. 0.53 0.13 0.33 0.34 0.41 0.35 0.24	-0.63 -2.01 -1.10 -0.90 -1.06 -1.41	of num p*ln(p) -0.34 -0.27 -0.37 -0.37 -0.37 -0.34	ber of species = 3 (i.e. A, E summay Table EA EA2 = Forest tree cover EA10 = Forest tree cover EA10 = Forest tree cover	Shannon Index	Evenness	0.98	1.06
or its evenness = Shanne Species Table EA EAO2 = Forest tree cover Species (A) EAO5 = Forest tree cover Species (C) EAO5 = Forest tree cover Species (B) Species (C) EAO5 = Forest tree cover Species (C) EAO5 = Forest tree cover Species (A)	n Index / [natur ndividuals 75 400 10 25 49 20 17 17 12 25 50 30	p, 0.53 0.13 0.41 0.35 0.24 0.24	rithm (-0.63 -2.01 -1.10 -0.90 -1.06 -1.41 -0.77	of num p*ln(p) -0.34 -0.27 -0.37 -0.37 -0.37 -0.37 -0.34 -0.36	ber of species = 3 (i.e. A, E summay Table EA EA2 = Forest tree cover EA10 = Forest tree cover EA10 = Forest tree cover	Shannon Index	Evenness		0.88
or its evenness = Shanne Species Table EA EAQ2 = Forest tree cover Species (A) Species (B) Species (C) EAQ5 = Forest tree cover Species (A) Species (C) EAQ1 = Forest tree cover	n Index / [natur 1000 100 100 100 100 100 100 100 100 10	P. 0.53 0.13 0.33 0.34 0.41 0.35 0.24	-0.63 -2.01 -1.10 -0.90 -1.06 -1.41	of num p*ln(p) -0.34 -0.27 -0.37 -0.37 -0.37 -0.34	ber of species = 3 (i.e. A, E summay Table EA EA2 = Forest tree cover EA10 = Forest tree cover EA10 = Forest tree cover	Shannon Index	Evenness	0.98	0.88

Drag Item	Drop Target
Picture 6	Rectangle 1
Picture 4	Rectangle 2
Picture 5	Rectangle 3
Picture 8	Rechteck 4
Picture 10	Rechteck 5
Picture 9	Rechteck 6

Drag and drop properties
Snap dropped items to drop target (Stack random)
Delay item drop states until interaction is submitted

Feedback when correct:

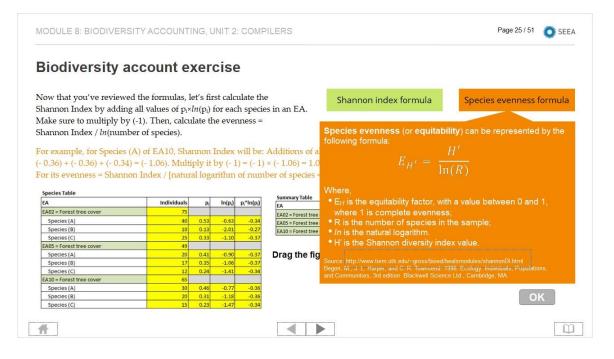
This is the correct solution.


Feedback when incorrect:

Take a look at the solution.

Very good! (Slide Layer)

										-
Biodiversity a	ccount e	xerc	ise	ġ						
Jow that you've reviewe	d the formulas, l	et's first	t calcı	ulate the	e –					
hannon Index by adding	g all values of $p_i \times$	ln(p _i) fo	or eacl	h specie	es in an EA.	Von				
Make sure to multiply by	(-1). Then, calcu	late the	even	nness =		Very goo	ju:			
hannon Index / ln(numb						This is the	correct solu	ution		
						and is the	Correct Jon			
or example, for Species ((A) of EA10, Sha	nnon Ir	ndex 1	will be:	Additions of all $p_i \times ln(p_i)$;					
- 0.36) + (- 0.36) + (- 0.34)) = (- 1.06). Multi	iply it b	y (- 1) = (- 1)	× (- 1.06) = 1.06.					
- 0.36) + (- 0.36) + (- 0.34)) = (- 1.06). Multi	iply it b	y (- 1) = (- 1)						
- 0.36) + (- 0.36) + (- 0.34)) = (- 1.06). Multi	iply it b	y (- 1) = (- 1)	× (- 1.06) = 1.06. ber of species = 3 (i.e. A, B,					
-0.36) + (-0.36) + (-0.34) for its evenness = Shanno) = (- 1.06). Multi	iply it b	y (- 1 ithm) = (- 1)	× (- 1.06) = 1.06. ber of species = 3 (i.e. A, B, <u>Summary Table</u>	thannen todau	Duaman	1		
- 0.36) + (- 0.36) + (- 0.34) For its evenness = Shanno Species Table) = (- 1.06). Multi on Index / [natur	iply it b al logari	y (- 1 ithm) = (- 1) of num	× (- 1.06) = 1.06. ber of species = 3 (i.e. A, B, Summary Table EA	Shannon Index	Evenness]		
- 0.36) + (- 0.36) + (- 0.34) For its evenness = Shanno Species Table) = (- 1.06). Multi on Index / [natur Individuals	iply it b al logari	y (- 1 ithm) = (- 1) of num	× (- 1.06) = 1.06. ber of species = 3 (i.e. A, B, <u>Summary Table</u>	0.97	0.88	-		
- 0.36) + (- 0.36) + (- 0.34) For its evenness = Shanno Species Table EA EAC2 = Forest tree cover) = (- 1.06). Multi on Index / [natur Individuals 75	ply it b al logar	y (- 1 ithm In(p,)) = (- 1) of num p;*In(p)	× (- 1.06) = 1.06. ber of species = 3 (i.e. A, B, Summary Table EA EAD2 = Forest tree cover					
- 0.36) + (- 0.36) + (- 0.34) For its evenness = Shanne Species Table EA EAQ2 = Forest tree cover Species (A)) = (- 1.06). Multi on Index / [natur Individuals 75 40	ply it b al logari Pi 0.53	y (- 1 ithm In(p,)) = (- 1) of num p,*In(p,) -0.34	× (-1.06) = 1.06. ber of species = 3 (i.e. A, B, Summary Table EA EAO2 = Forest tree cover EAO3 = Forest tree cover	0.97	0.88			
- 0.36) + (- 0.34) for its evenness = Shanno Species Table EAQ = Forest tree cover Species (A) Species (B)) = (- 1.06). Multi on Index / [natur ndividuals 73 40 10	ply it b al logari p 0.53 0.13	y (- 1 ithm In(p) -0.63 -2.01) = (- 1) of num p,*In(p) -0.34 -0.27	× (-1.06) = 1.06. ber of species = 3 (i.e. A, B, Summary Table EA EAO2 = Forest tree cover EAO3 = Forest tree cover	0.97	0.88			
- 0.36) + (- 0.34) For its evenness = Shanno Species Table EA EAC2 = Forest tree cover Species (A) Species (B) Species (C)) = (- 1.06). Multi on Index / [natur Individuals 75 40 100 25	ply it b al logari p 0.53 0.13	y (- 1 ithm In(p) -0.63 -2.01) = (- 1) of num p,*In(p) -0.34 -0.27	× (-1.06) = 1.06. ber of species = 3 (i.e. A, B, Summary Table EA EAO2 = Forest tree cover EAO3 = Forest tree cover	0.97	0.88			
- 0.36) + (- 0.34) tor its evenness = Shanno Species Table EA EA02 = Forest tree cover Species (A) Species (C) EA05 = Forest tree cover) = (- 1.06). Multi on Index / [natur Individuals 75 40 10 25 49	ply it b al logari 0.53 0.13 0.33	y (- 1) ithm [n(p)] -0.63 -2.01 -1.10) = (- 1) of num p,*ln(p) -0.34 -0.27 -0.37	× (-1.06) = 1.06. ber of species = 3 (i.e. A, B, Summary Table EA EAO2 = Forest tree cover EAO3 = Forest tree cover	0.97	0.88			
- 0.36) + (- 0.34) for its evenness = Shanno Species Table EA EAQ = Forest tree cover Species (A) Species (B) Species (C) EAQ = Forest tree cover Species (A)) = (- 1.06). Multi on Index / [natur ndividuals 75 40 10 25 49 20	ply it b al logari 0.53 0.13 0.33 0.41	y (- 1) ithm -0.63 -2.01 -1.10 -0.90	.) = (- 1) of num -0.34 -0.27 -0.37 -0.37	× (-1.06) = 1.06. ber of species = 3 (i.e. A, B, Summary Table EA EAO2 = Forest tree cover EAO3 = Forest tree cover	0.97	0.88			
- 0.36) + (- 0.34) For its evenness = Shanno Species Table EA EAC2 = Forest tree cover Species (A) Species (B) EAC5 = Forest tree cover Species (A) Species (B)) = (- 1.06). Multi on Index / [natur 100 100 100 100 100 100 100 100 100 100	ply it b al logari 0.53 0.13 0.33 0.33 0.41 0.35	y (- 1) ithm -0.63 -2.01 -1.10 -0.90 -1.06) = (- 1) of num p,*In(p) -0.34 -0.27 -0.37 -0.37 -0.37	× (-1.06) = 1.06. ber of species = 3 (i.e. A, B, Summary Table EA EAO2 = Forest tree cover EAO3 = Forest tree cover	0.97	0.88			
- 0.36) + (- 0.34) for its evenness = Shanno Species Table EA EAQ = Forest tree cover Species (A) Species (B) Species (C) Species (B) Species (B) Species (C)) = (- 1.06). Multi on Index / [natur 100 100 100 100 100 100 100 100 100 100	ply it b al logari 0.53 0.13 0.33 0.33 0.41 0.35	y (- 1) ithm -0.63 -2.01 -1.10 -0.90 -1.06) = (- 1) of num p,*In(p) -0.34 -0.27 -0.37 -0.37 -0.37	× (-1.06) = 1.06. ber of species = 3 (i.e. A, B, Summary Table EA EAO2 = Forest tree cover EAO3 = Forest tree cover	0.97	0.88		Contin	
- 0.36) + (- 0.34) for its evenness = Shanno Species Table EA EAQ2 = Forest tree cover Species (A) Species (B) Species (C) EAQ5 = Forest tree cover Species (A) Species (A) Species (C) EAID = Forest tree cover) = (- 1.06). Multi on Index / [natur ndividuals 75 40 25 40 25 49 20 20 20 20 20 20 20 20 20 20 20 20 20	Pi 0.53 0.13 0.33 0.41 0.35 0.24	y (- 1 iithm -0.63 -2.01 -1.10 -0.90 -1.06 -1.41) = (- 1) of num -0.34 -0.27 -0.37 -0.37 -0.37 -0.37	× (-1.06) = 1.06. ber of species = 3 (i.e. A, B, Summary Table EA EAO2 = Forest tree cover EAO3 = Forest tree cover	0.97	0.88		Contin	ue


Not quite right. (Slide Layer)

Explanation 1 (Slide Layer)

Biodiversity a	ccount ex	kerc	cise	ē				
Iow that you've reviewed	l the formulas, le	et's firs	st calc	ulate th	Shannon ii	ndex formula	Species evenness forr	nula
hannon Index by adding	all values of pi×l	$n(p_i)$ for	or eac	h specie	in an EA.		Concernence and a second	
fake sure to multiply by	1 · · · · ·							
Shannon Index / ln (number of species).					The Shannon formula:	The Shannon Index can be represented by the following		
1 2 9 1 2	IN CELLO CL	-		-11.1				
or example, for Species (.				will be:	dditions of a			
0.36) + (- 0.36) + (- 0.34)					(- 1.06) = 1.0			
0.36) + (- 0.36) + (- 0.34) or its evenness = Shanno					(- 1.06) = 1.0			
or its evenness = Shanno					(- 1.06) = 1.0 er of species = Where,			
or its evenness = Shanno Species Table	n Index / [natura	1 logar	rithm	of num	(- 1.06) = 1.0 er of species = Where, • H' is the Sha			
or its evenness = Shanno species Table EA	n Index / [natura				(-1.06) = 1.0 er of species = Summary Table R is the Sha • R is the tota	i = 1 annon index; Il number of species i		
or its evenness = Shanno Species Table	n Index / [natura	ıl logar Pi	rithm In(p _i)	of num p;*ln(p;)	(-1.06) = 1.0 pr of species = summary Table EA EAD = Forest tree · H' is the Sha · R is the tota · In is the natu	i = 1 annon index; Il number of species i ural logarithm;	in the sample;	
or its evenness = Shanno species Table EA	n Index / [natura	Pi 0.53	In(p _i)	of num p;*ln(p;) -0.34	(-1.06) = 1.0 pr of species = summary Table EA EAD = Forest tree · H' is the Sha · R is the tota · In is the natu	i = 1 annon index; Il number of species i ural logarithm;		
or its evenness = Shanno Species Table EA EA02 = Forest tree cover Species (A) Species (B)	n Index / [natura	Pi 0.53 0.13	In(p _i) -0.63 -2.01	of num p*In(p) -0.34 -0.27	(-1.06) = 1.0 er of species = Summary Table FA EA22 = Forest tree // n is the natu // n is the natu	i = 1 annon index; Il number of species i ural logarithm;	in the sample;	
or its evenness = Shanno Species Table EA EAC2 = Forest tree cover Species (A) Species (B) Species (C)	n Index / [natura Individuals 75 40 100 25	Pi 0.53	In(p _i)	of num p;*ln(p;) -0.34	(- 1.06) = 1.0 pr of species = Summary Table EA EAC2 = Forest tree EAC3 = Forest tree * H' is the Sha * In is the natu EAC3 = Forest tree	i = 1 annon index; Il number of species i ural logarithm;	in the sample;	
or its evenness = Shanno Species Table EA EA22 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover	n Index / [natura Individuals 75 40 25 25 49	Pi 0.53 0.13 0.33	In(p _i) -0.63 -2.01 -1.10	of num p,*in(p) -0.34 -0.27 -0.37	(- 1.06) = 1.0 er of species = Summary Table EAUS = Forest tree EAUS = Forest tree EAUS = Forest tree EAUS = Forest tree A vigour walk	<i>i</i> = 1 annon index; Il number of species i ural logarithm; portion of individuals	in the sample; in the ith species in the	
or its evenness = Shanno Species Table EA EAQ2 = Forest tree cover Species (A) Species (B) EAQ5 = Forest tree cover Species (A)	n Index / [natura Individuals 75 40 10 25 49 20	Pi 0.53 0.13 0.33	In(p) -0.63 -2.01 -1.10 -0.90	of num 	(- 1.06) = 1.0 er of species = Summary Table FA EA02 = Forest tree EA10 = Forest tree EA10 = Forest tree EA10 = Forest tree Summary Table	<i>i</i> = 1 annon index; Il number of species i ural logarithm; portion of individuals	in the sample;	
or its evenness = Shanno Species Table EA EAC2 = Forest tree cover Species (A) Species (B) EAC5 = Forest tree cover Species (A) Species (B)	n Index / [natura individuals 40 10 25 49 20 17	P. 0.53 0.13 0.33 0.41 0.35	In(p) -0.63 -2.01 -1.10 -0.90 -1.06	of num -0.34 -0.27 -0.37 -0.37 -0.37	(- 1.06) = 1.0 er of species = EA EAC = Forest tree EAC = Forest t	i = 1 annon index; I number of species i ural logarithm; portion of individuals ue depends on numb	in the sample; in the ith species in the er of species = ln(R).	
or its evenness = Shanno Species Table EA EAQ2 = Forest tree cover Species (A) Species (B) Species (C) EAD5 = Forest tree cover Species (A) Species (B) Species (B) Species (C)	n Index / [natura Individuals 75 40 10 25 49 20 20 17 12	Pi 0.53 0.13 0.33	In(p) -0.63 -2.01 -1.10 -0.90	of num 	(-1.06) = 1.0 er of species = Summary Table FAQ2 = forest tree EA03 = forest tree EA10 = forest tree Drag the fig Source: Shamon, C.	<i>i</i> = 1 annon index; Il number of species i ural logarithm; portion of individuals	in the sample; in the ith species in the er of species = ln(R). Amathematical theory of	
or its evenness = Shanno species Table EA EAQ2 = Forest tree cover Species (A) Species (B) EAQ5 = Forest tree cover Species (A) Species (B) Species (A) Species (C) EA10 = Forest tree cover	n Index / [natura Individuals 75 40 10 25 49 20 17 12 65	Pi 0.53 0.13 0.33 0.41 0.35 0.24	In(p) -0.63 -2.01 -1.10 -0.90 -1.06 -1.41	of num -0.34 -0.27 -0.37 -0.37 -0.37 -0.37	(-1.06) = 1.0 er of species = Summary Table FAQ2 = forest tree EA03 = forest tree EA10 = forest tree Drag the fig Source: Shamon, C.	i = 1 annon index; Il number of species i ural logarithm; portion of individuals ue depends on numb E. (July and October 1948), "A System Technical Journal. 27	in the sample; in the ith species in the er of species = ln(R). Amathematical theory of	
or its evenness = Shanno Species Table EA EAC2 = Forest tree cover Species (A) Species (B) Species (C) EAC5 = Forest tree cover Species (C) EA10 = Forest tree cover Species (A)	n Index / [natura individuals 75 40 10 25 49 20 17 17 12 55 30	P, 0.53 0.13 0.33 0.41 0.35 0.24 0.24	In(p) -0.63 -2.01 -1.10 -0.90 -1.06 -1.41 -0.77	of num p,*in(p) -0.34 -0.27 -0.37 -0.37 -0.37 -0.34 -0.36	(- 1.06) = 1.0 er of species = Summay Table EA EAQ2=Forest tree EAD3=Forest tree Drag the fig Source: Shamon, C communication: "Bell You can refer also to	i = 1 annon index; Il number of species i ural logarithm; portion of individuals ue depends on numb E. (July and October 1948), "A System Technical Journal. 27	in the sample; in the ith species in the er of species = In(R). mathematical theory of . 379-423 and 623-656	
or its evenness = Shanno species Table EA EAQ2 = Forest tree cover Species (A) Species (B) EAQ5 = Forest tree cover Species (A) Species (B) Species (A) Species (C) EA10 = Forest tree cover	n Index / [natura Individuals 75 40 10 25 49 20 17 12 65	Pi 0.53 0.13 0.33 0.41 0.35 0.24	In(p) -0.63 -2.01 -1.10 -0.90 -1.06 -1.41	of num -0.34 -0.27 -0.37 -0.37 -0.37 -0.37	(- 1.06) = 1.0 er of species = Summay Table EA EAQ2=Forest tree EAD3=Forest tree Drag the fig Source: Shamon, C communication: "Bell You can refer also to	i = 1 annon index; Il number of species i ural logarithm; portion of individuals Le depends on numb E (July and October 1948), "A System Technical Journal, 27	in the sample; in the ith species in the er of species = In(R). mathematical theory of . 379-423 and 623-656	11:00) 21 11:00 21 11:00

Explanation 2 (Slide Layer)

1.26 Biodiversity Account Exercise

(Text Entry, 10 points, 1 attempt permitted)

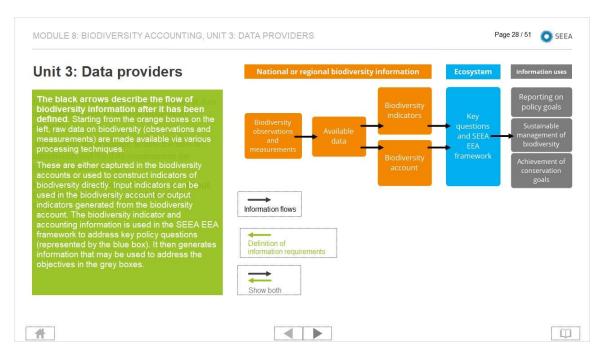
s for the fo		orest E	As is co	mpleted. ast diverse and why?				
the fo	orest	EAs is	s the lea	ast diverse and why?				
ividuals				Summary Table				
ividuals				Summary Table				
	Pi	In(p.)	n*ln(n)					
	P	In(n)	p*lp(p)					
	P	lo(n)	0*ln(0)					
	P	lo(n)	p*in(p)					
	Pi	lo(p)	p*ln(p)					
	p	lo(n)	n*ln(n)					
	p,	In(n)	n*ln(n)					
							-	
75			11 0.0	EA	Shannon Index	Evenness		
40	0.53	-0.63	-0.34	EA02 = Forest tree cover	0.97	0.88		
				EA05 = Forest tree cover	1.08	0.98		
				EA10 = Forest tree cover	1.06	0.96		
20	0.41	-0.90	-0.37					
17	0.35	-1.06	-0.37					
65								
30	0.46	-0.77	-0.36					
20	0.31	-1.18					0	6
15	0.23	-1.47	-0.34					
	17 12 65 30 20	25 0.33 49 0.41 20 0.41 17 0.35 12 0.24 65 0.46 20 0.31	25 0.33 -1.10 49	25 0.33 -1.10 -0.37 49 - - 20 0.41 -0.50 -0.37 12 0.35 -1.06 -0.37 12 0.24 -1.41 -0.34 65 - - 30 0.46 -0.77 -0.36 20 0.31 -1.18 -0.36	10 0.13 -2.01 -0.27 25 0.33 -1.10 -0.37 49 -0.03 -0.37 17 0.35 -1.06 12 0.24 -1.41 -0.36 -0.34 65 -0.36 20 0.31 -1.18	10 0.13 -2.01 -0.27 25 0.33 -1.10 -0.37 49 -0.90 -0.37 17 0.35 -1.06 12 0.24 -1.41 -0.34 65 -0.37 30 0.46 -0.37 30 0.46 -0.36	10 0.13 -2.01 -0.27 25 0.33 -1.10 -0.37 49	10 0.13 -2.01 -0.27 25 0.33 -1.10 -0.37 49 - -0.05 -0.37 17 0.35 -1.06 -0.36 12 0.24 -1.41 -0.34 65 - - 30 0.46 -0.37 30 0.46 -0.38

Not serious, but anyway ... (Slide Layer)

ODULE 8: BIODIVERS	DULE 8: BIODIVERSITY ACCOUNTING, UNIT 2: COMPILERS							Page 26 / 51	O SEE
Biodiversity a	ccount e	xer	cise	е					
reat. The summary table	e of species for th	nree fo	orest E	As is co	mpleted.				
an you figure out which	ch one of the fo	orest E	EAs is	s the lea	ast diverse and why?	Not serious	s, but any	way	
Type your answer here.									
	todbibbole	-	la(a)	n *la(n)	Summary Table				
EA	Individuals	P _i	In(p _i)	p;*In(p;)	Summary Table	Shannon Index	Evenness		
EA EA02 = Forest tree cover	75				EA EA02 = Forest tree cover	0.97	0.88		
EA EA02 = Forest tree cover Species (A)	75 40	0.53	-0.63	-0.34	EA EA02 = Forest tree cover EA05 = Forest tree cover	0.97	0.88		
EA EA02 = Forest tree cover Species (A) Species (B)	75 40 10		-0.63 -2.01	-0.34	EA EA02 = Forest tree cover	0.97	0.88		
EA EA02 = Forest tree cover Species (A) Species (B) Species (C)	75 40	0.53	-0.63	-0.34	EA EA02 = Forest tree cover EA05 = Forest tree cover	0.97	0.88		
EA EA02 = Forest tree cover Species (A) Species (B) Species (C)	75 40 10 25	0.53	-0.63 -2.01	-0.34 -0.27 -0.37	EA EA02 = Forest tree cover EA05 = Forest tree cover	0.97	0.88		
Species (B) Species (C) EA05 = Forest tree cover	75 40 10 25 49	0.53 0.13 0.33	-0.63 -2.01 -1.10	-0.34 -0.27 -0.37	EA EA02 = Forest tree cover EA05 = Forest tree cover	0.97	0.88		
EA EAO2 = Forest tree cover Species (A) Species (B) Species (C) EAO5 = Forest tree cover Species (A)	75 40 10 25 49 20	0.53 0.13 0.33 0.41	-0.63 -2.01 -1.10 -0.90	-0.34 -0.27 -0.37 -0.37	EA EA02 = Forest tree cover EA05 = Forest tree cover	0.97	0.88		
EA EA02 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover Species (A) Species (B) Species (C)	75 40 20 25 49 20 17	0.53 0.13 0.33 0.41 0.35	-0.63 -2.01 -1.10 -0.90 -1.06	-0.34 -0.27 -0.37 -0.37 -0.37	EA EA02 = Forest tree cover EA05 = Forest tree cover	0.97	0.88		
EA EA02 = Forest tree cover Species (A) Species (B) Species (C) EA05 = Forest tree cover Species (A) Species (B) Species (C)	75 40 25 49 20 20 17 12	0.53 0.13 0.33 0.41 0.35	-0.63 -2.01 -1.10 -0.90 -1.06	-0.34 -0.27 -0.37 -0.37 -0.37 -0.34	EA EA02 = Forest tree cover EA05 = Forest tree cover	0.97	0.88	Contin	
EA EA02 = Forest tree cover Species (A) Species (B) EA05 = Forest tree cover Species (A) Species (B) Species (C) EA10 = Forest tree cover	75 40 255 49 20 17 12 65	0.53 0.13 0.33 0.41 0.35 0.24	-0.63 -2.01 -1.10 -0.90 -1.06 -1.41	-0.34 -0.27 -0.37 -0.37 -0.37 -0.34 -0.36	EA EA02 = Forest tree cover EA05 = Forest tree cover	0.97	0.88	Continu	ue

Thank you, that was close. (Slide Layer)

									-
Biodiversity ac	count e	xer	cise	5					
reat. The summary table (of species for t	nree fo	orest E	As is co	mpleted.				
an you figure out which	one of the fo	orest	EAs is	the lea	st diverse and why?	Thank you, t	hat was close		
Type your answer here.						So you just fir	nished Unit 2.		
,, ,									
Species Table									
EA	Individuals	p	In(p _i)	pi*ln(pi)	Summary Table				
EA02 = Forest tree cover	75				EA	Shannon Index	Evenness		
Species (A)	40	0.53	-0.63	-0.34	EA02 = Forest tree cover	0.97	0.88		
Species (B)	10	0.13	-2.01	-0.27	EA05 = Forest tree cover	1.08	0.98		
Species (C)	25	0.33	-1.10	-0.37	EA10 = Forest tree cover	1.06	0.96		
EA05 = Forest tree cover	49								
	49	0.41	-0.90	-0.37					
EA05 = Forest tree cover		0.41	-0.90 -1.06	-0.37					
EA05 = Forest tree cover Species (A)	20								
EA05 = Forest tree cover Species (A) Species (B)	20 17	0.35	-1.06	-0.37					
EA05 = Forest tree cover Species (A) Species (B) Species (C)	20 17 12	0.35	-1.06	-0.37				Continu	19
EA05 = Forest tree cover Species (A) Species (B) Species (C) EA10 = Forest tree cover	20 17 12 65	0.35	-1.06 -1.41	-0.37 -0.34				Continu	ue

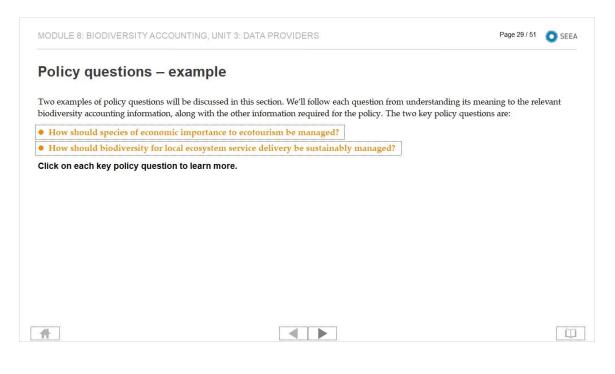

1.27 Module units

Module units	The biodiversity accounting modu We recommend completing these	le will take you through four units, units in order.	as listed below.
Unit 1: Biodiversity accounting	Unit 2: Compilers	Unit 3: Data providers	Unit 4: Review
 What is it? Why do we need it? What does it look like? 	 Basic concepts for measuring biodiversity. Steps for compiling biodiversity 	 Concepts Biodiversity accounting information uses. Data options, 	● Quiz ● Summary
 Expertise and data required. 	accounts.	examples and issues.	

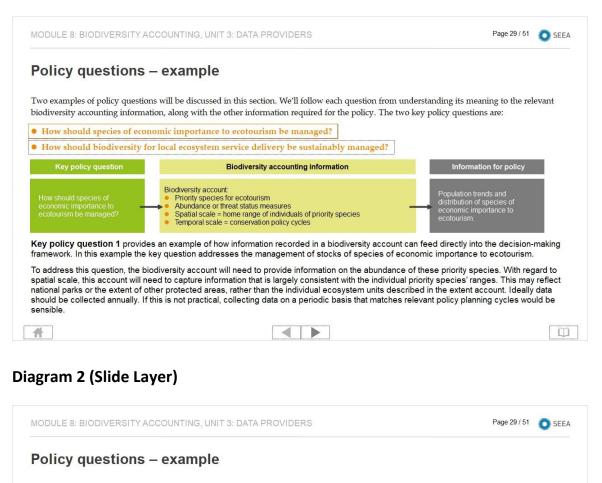
1.28 Unit 3

MODULE 8: BIODIVERSITY ACCOUNTING, UNIT	3: DATA PROVIDERS		Pa	ge 28 / 51 🚫 SEEA
Unit 3: Data providers	National or regional biodiversi	ty information	Ecosystem	Information uses
In this unit, we'll explore different sources of data and methods used to compile biodiversity accounts. At this point it's important to note the uses of	Biodiversity observations Available and data	Biodiversity indicators	Key questions and SEEA FEA	Reporting on policy goals Sustainable management of biodiversity
information and the data requirements for biodiversity accounting.	measurements	Biodiversity account	framework	Achievement of conservation
Hover over the arrows to learn more about the information needs and flows in the diagram.	Information flows	_		goals
	Definition of information requirements			
	Show both			
f				

Explanation 1 (Slide Layer)

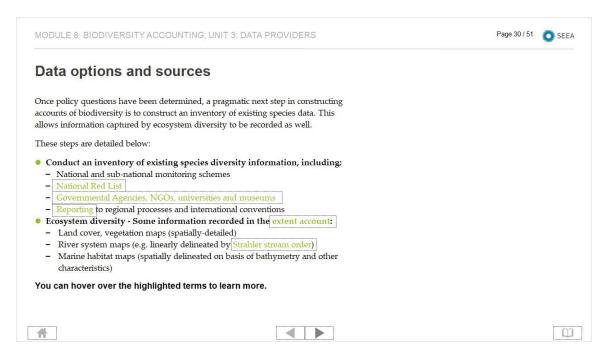

Explanation 2 (Slide Layer)

Jnit 3: Data providers	National or regional biodiversity information	Ecosystem	Information uses
The green arrows represent stages in the definition of information needs. Starting in the grey boxes on the right hand side – the uses that information on biodiversity is required for should be specified first. These will inform specific key policy questions for biodiversity accounting and the SEEA framework	Biodiversity observations and measurements Biodiversity Biodiversity	Key questions and SEEA EEA framework	Reporting on policy goals Sustainable management of biodiversity Achievement of
(represented by the blue box). This, in turn, will inform what information should be recorded in the biodiversity accounts and which indicators of biodiversity are required for ecosystem condition. This will set the parameters for measuring biodiversity (e.g. are data on species abundance, richness or threat status required), spatial and temporal scale, and any associated processing activities (e.g. GIS, spreadsheets, modeling etc.) required to make this data available (orange boxes).	Account		conservation goals


Explanation 3 (Slide Layer)

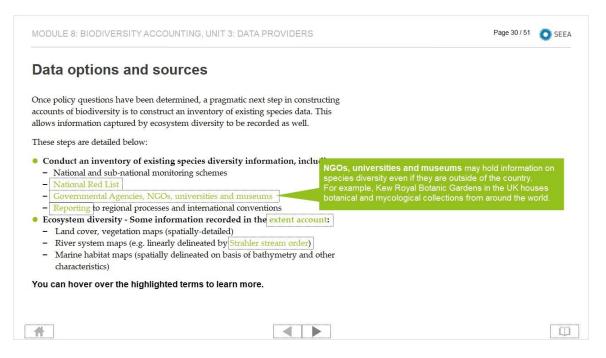
MODULE 8: BIODIVERSITY ACCOUNTING, UNIT	3: DATA PROVIDERS	Page 28 / 51 💽 SEEA
Unit 3: Data providers	National or regional biodiversity information	Ecosystem Information uses
In this unit, we'll explore different sources of data and methods used to compile biodiversity accounts. At this point it's important to note the uses of information and the data requirements for biodiversity accounting. Hover over the arrows to learn more about the information needs and flows in the diagram.	Biodiversity observations and measurements Information flows	Key questions and SEEA EEA framework Reporting on policy goals Sustainable management of biodiversity Achievement of conservation goals
		(D)

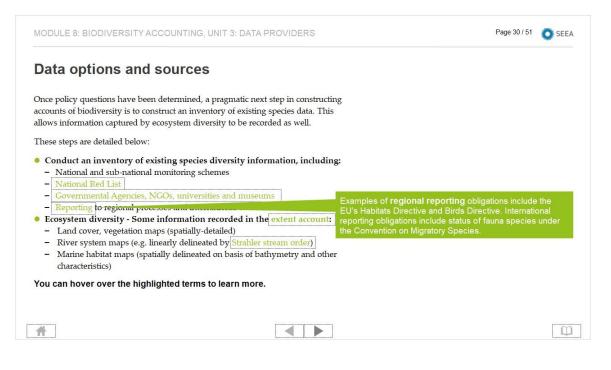
1.29 Policy questions - Example


Diagram 1 (Slide Layer)

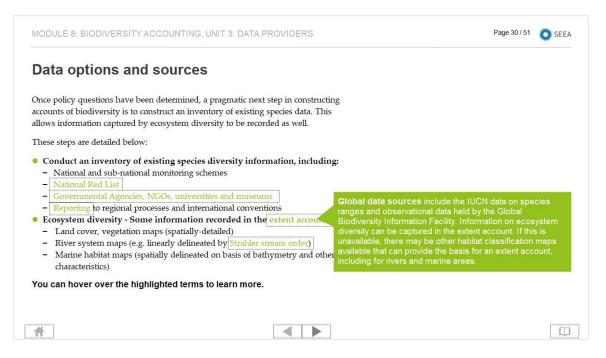
Two examples of policy questions will be discussed in this section. We'll follow each question from understanding its meaning to the relevant biodiversity accounting information, along with the other information required for the policy. The two key policy questions are:

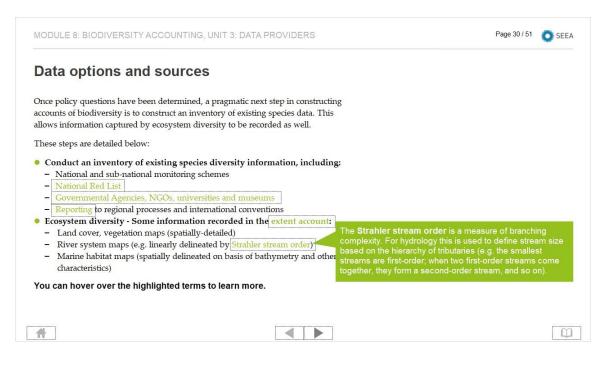
now should bloulversity	for local ecosystem service delivery be sustainably managed?	
Key policy question	Biodiversity accounting information	Information for policy
How should biodiversity for local ecosystem service delivery be sustainably managed?	Biodiversity account: Range of species from different taxonomic groups Abundance and/or richness measures Spatial scale = area of ecosystem unit Temporal scale = local development policy cycles	Spatial trends in measures of biodiversity important for local ecosystem services delivery
	ates the role of biodiversity in ecosystem service delivery.	
s, the biodiversity account w	on addresses the sustainable management of biodiversity stocks for ec ill need to provide information on species diversity across a range of sp agard to spatial scale, ideally this account should capture information at t cator of biodiversity can be generated for the ecosystem condition. This	ecies groups that are important to he ecosystem unit scale (from the

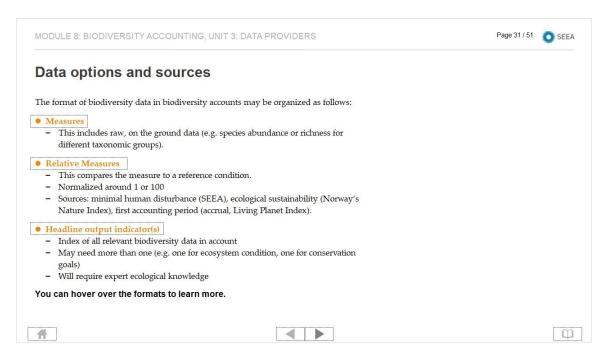

1.30 Data options and sources


Explanation 1 (Slide Layer)

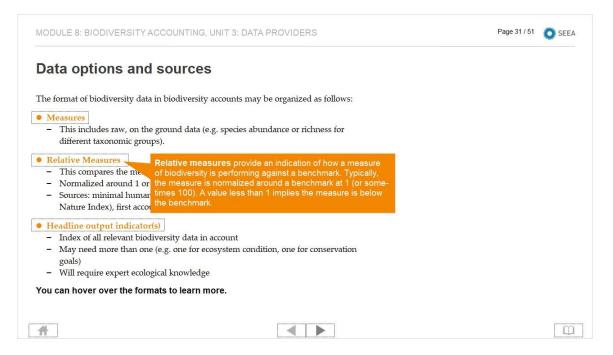
MODULE 8: BIODIVERSITY ACCOUNTING, U	INIT 3: DATA PROVIDERS	Page 30 / 51	O SEE
Data options and sources			
Once policy questions have been determined, a	pragmatic next step in constructing		
accounts of biodiversity is to construct an invent	5 0 1		
illows information captured by ecosystem diver	sity to be recorded as well.		
These steps are detailed below:			
Conduct an inventory of exis	ed List can provide information on the		
 National and sub-national m conservation 	status of species over time.		
- National Red List	1		
 Governmental Agencies, NGOs, universitie Reporting to regional processes and international processes and processes and international processes and international processes and processes a			
Ecosystem diversity - Some information re			
 Land cover, vegetation maps (spatially-de 			
- River system maps (e.g. linearly delineate			
- Marine habitat maps (spatially delineated			
characteristics)			
ou can hover over the highlighted terms to	o learn more		
	for the second se		(
ff			

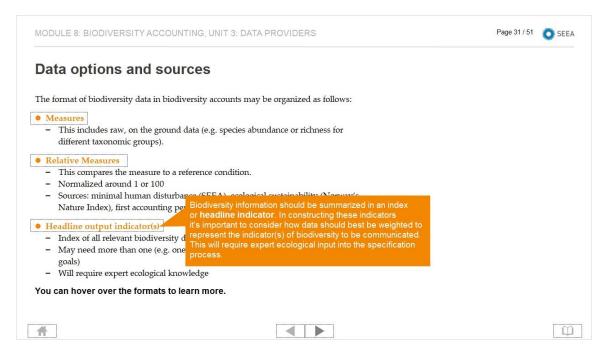

Explanation 2 (Slide Layer)


Explanation 3 (Slide Layer)

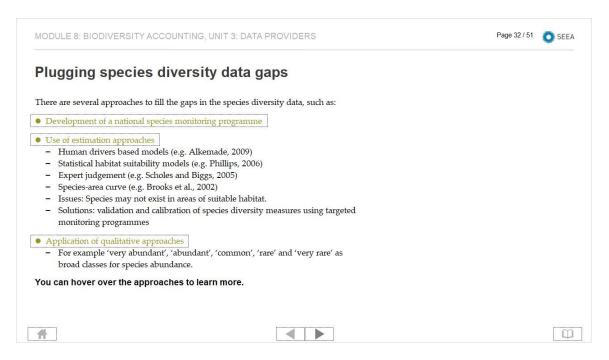

Explanation 4 (Slide Layer)

Explanation 5 (Slide Layer)

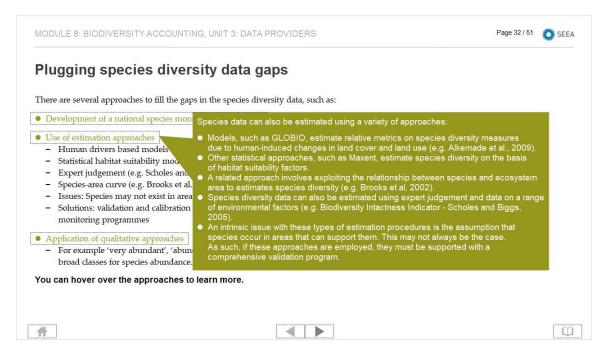

1.31 Data options and sources

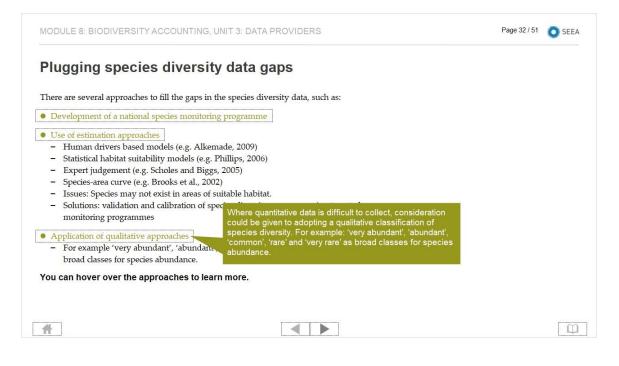

Explanation 1 (Slide Layer)

IODULE 8: BIODIVERSITY ACCOUNT	ING, UNIT 3: DATA PROVIDERS	Page 31 / 51	O SEE
Data options and sour	202		
ata options and source			
he format of biodiversity data in biodive	ersity accounts may be organized as follows:		
Measurements will ind - This include of biodiversity. These re different ta estimated data to addre			
Relative Measures			
 This compares the measure to a refe Normalized around 1 or 100 	erence condition.		
	ce (SEEA), ecological sustainability (Norway's		
Nature Index), first accounting peri			
Headline output indicator(s)			
- Index of all relevant biodiversity da	ata in account		
 May need more than one (e.g. one is goals) 	for ecosystem condition, one for conservation		
- Will require expert ecological know	ledge		
ou can hover over the formats to lea	arn more.		
48			

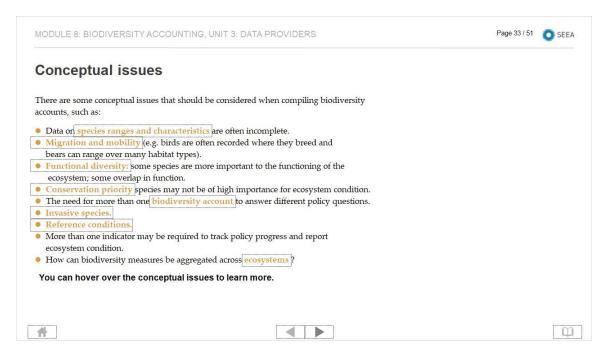

Explanation 2 (Slide Layer)

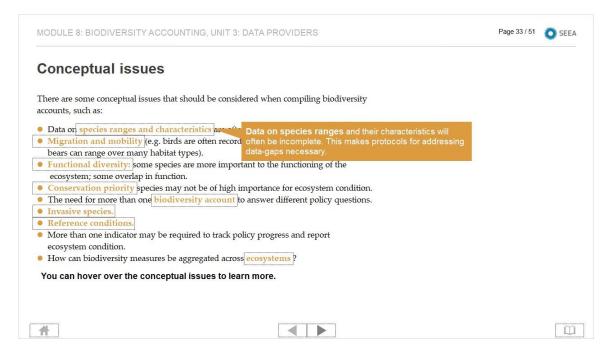
Explanation 3 (Slide Layer)

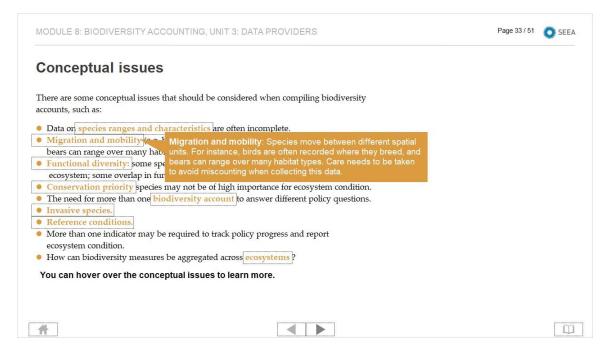

1.32 Plugging species diversity data gaps

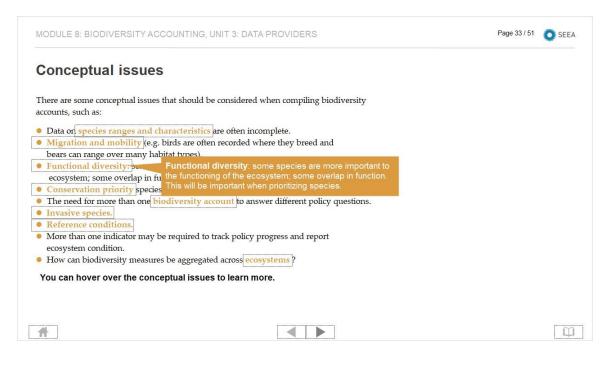

Explanation 1 (Slide Layer)

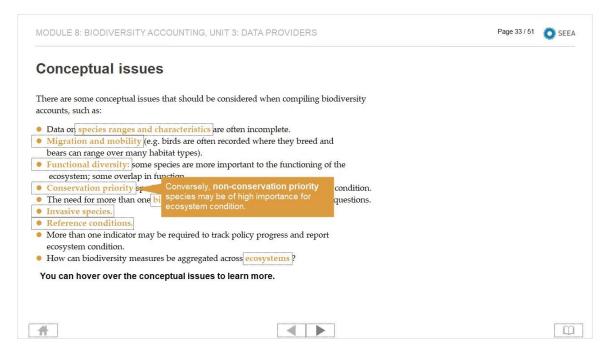
nere are several approaches to fill the gaps in the sp		
Development of a national species monitoring pro Use of estimation approaches	gramme - Ideally data gaps could be filled by instituting new monitoring programme. However, this may not always be practicable.	
- Human drivers based models (e.g. Alkemade,	2009)	
- Statistical habitat suitability models (e.g. Phillip		
 Expert judgement (e.g. Scholes and Biggs, 2009 Experies area gurge (e.g. Brooks et al. 2002))	
 Species-area curve (e.g. Brooks et al., 2002) Issues: Species may not exist in areas of suitable 	a habitat	
 Solutions: validation and calibration of species 		
monitoring programmes	arversity measures using argered	
Application of qualitative approaches		
 For example 'very abundant', 'abundant', 'com broad classes for emotion abundance. 	imon', fare and very fare as	
broad classes for species abundance.		

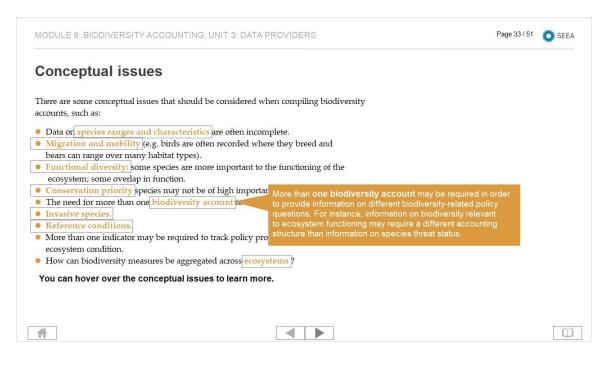

Explanation 2 (Slide Layer)

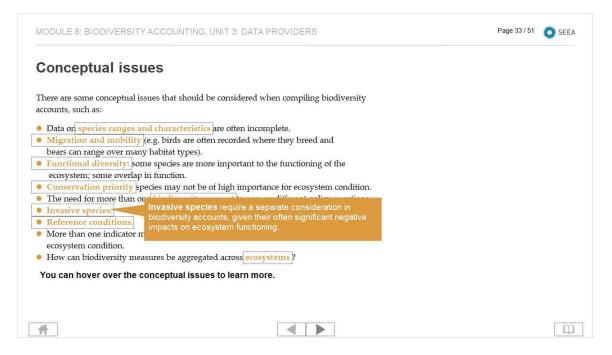

Explanation 3 (Slide Layer)

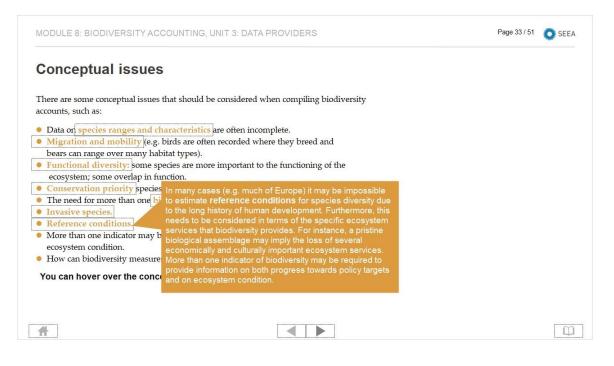

1.33 Conceptual issues

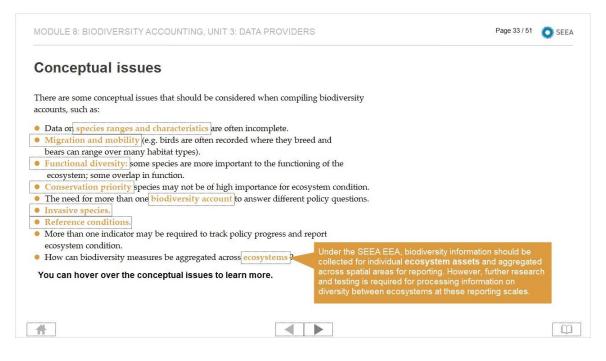

Explanation 1 (Slide Layer)

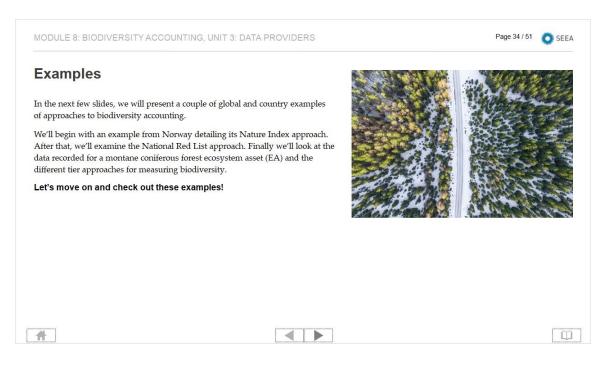

Explanation 2 (Slide Layer)

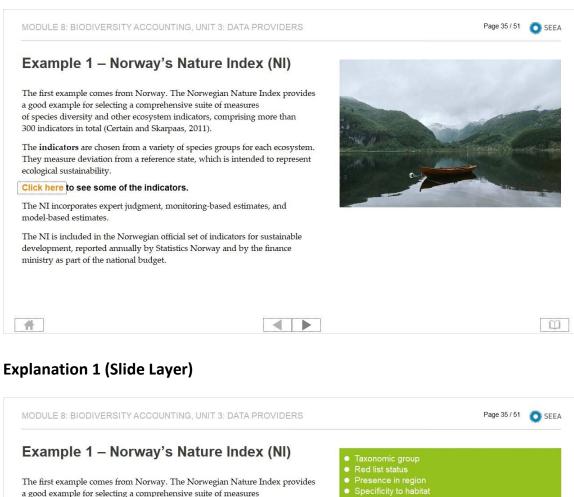

Explanation 3 (Slide Layer)


Explanation 4 (Slide Layer)

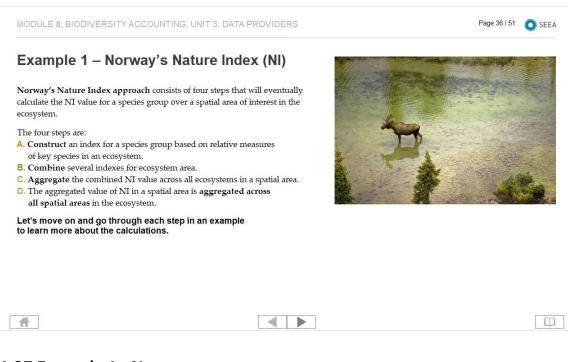

Explanation 5 (Slide Layer)


Explanation 6 (Slide Layer)

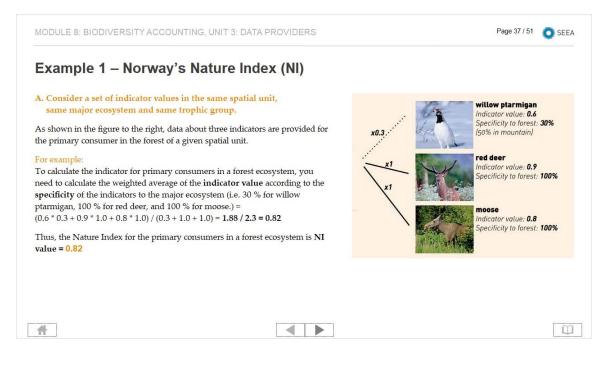

Explanation 7 (Slide Layer)


Explanation 8 (Slide Layer)

1.34 Examples



1.35 Example 1 - Norway

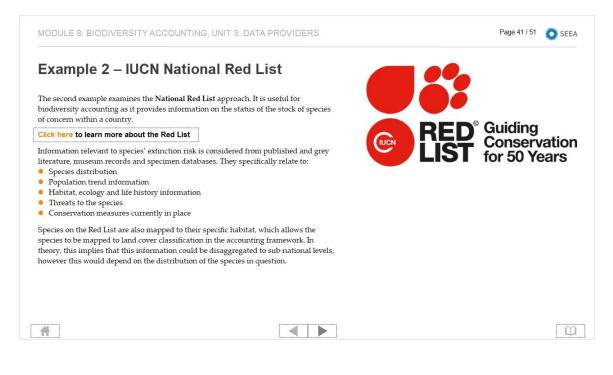


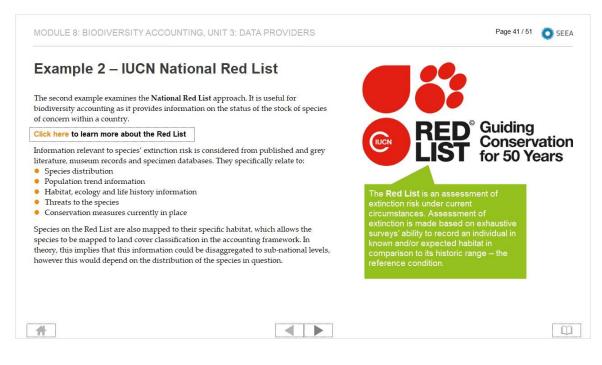
 Example 1 – Norway's Nature Index (NI) The first example comes from Norway. The Norwegian Nature Index provides a good example for selecting a comprehensive suite of measures of species diversity and other ecosystem indicators, comprising more than 300 indicators in total (Certain and Skarpaas, 2011). The indicators are chosen from a variety of species groups for each ecosystem. They measure deviation from a reference state, which is intended to represent ecological sustainability. Click here to see some of the indicator. The NI incorporates expert judgment, m. model-based estimates. The NI is included in the Norwegian official set of indicators for sustainable development, reported annually by Statistics Norway and by the finance ministry as part of the national budget. 	 Taxonomic group Red list status Presence in region Specificity to habitat Trophic group (primary producer, herbivore, predator, carnivore) Keystone species Generality (specialist or generalist species) Community (indicator refers to population or community), Sub-habitat (description) Ecosystem service (contributing to) Quick response to environmental change Sensitive to which pressure Migrating Multiple major habitats Reference value (i.e., value of "reference state" chosen)
₫	

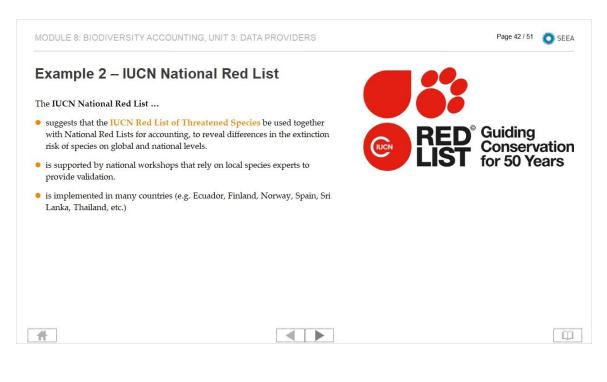
1.36 Example 1 - Norway

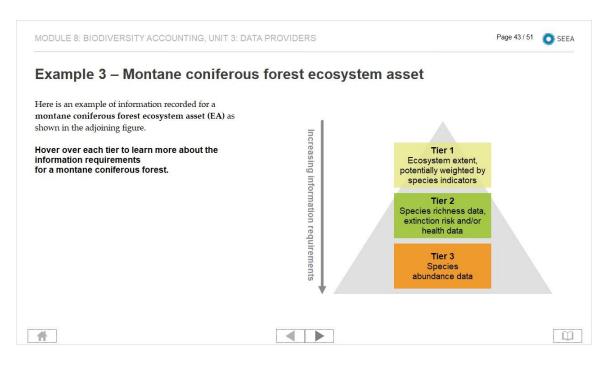
1.37 Example 1 - Norway

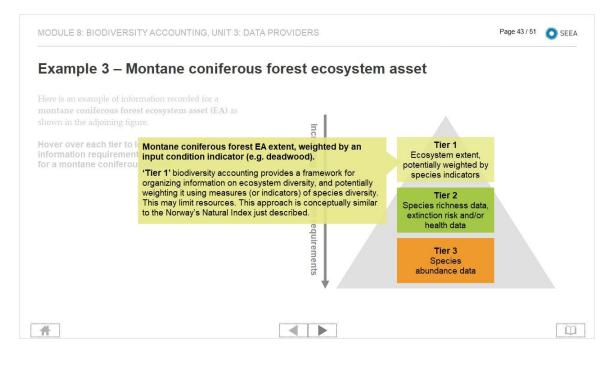
1.38 Example 1 - Norway

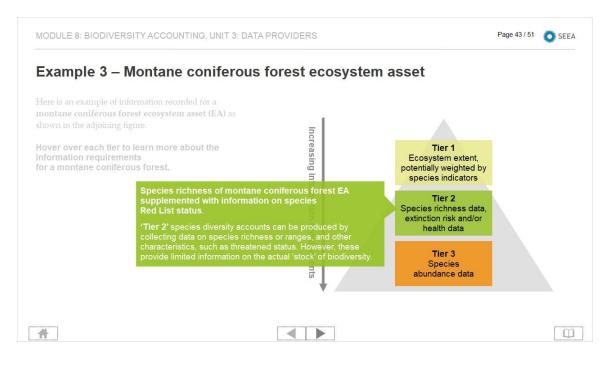

1.39 Example 1 – Norway

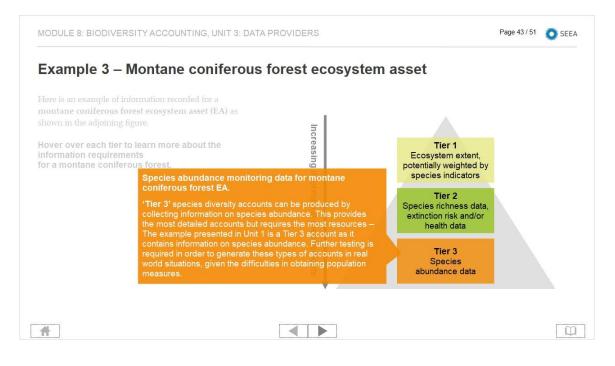

1.40 Example 1 – Norway

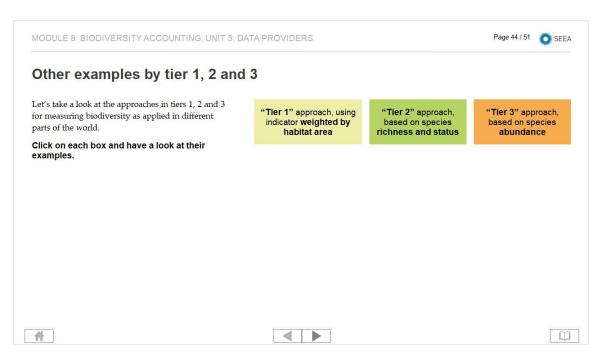

1.41 Example 2 - IUCN


Explanation (Slide Layer)


1.42 Example 2 - IUCN


1.43 Example 3


Explanation 1 (Slide Layer)

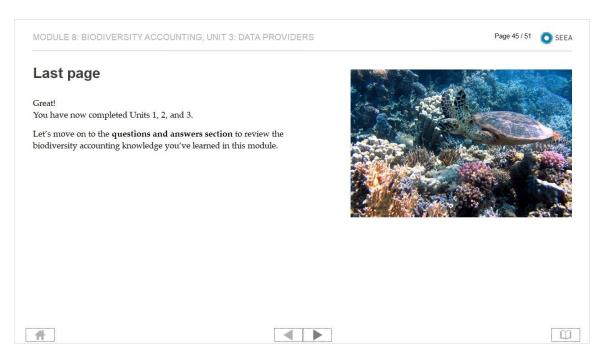

Explanation 2 (Slide Layer)

Explanation 3 (Slide Layer)

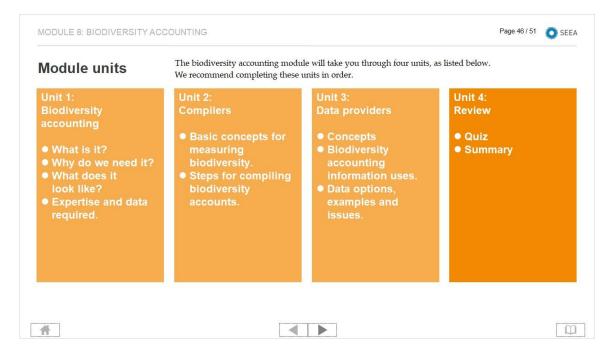
1.44 Example 4

Explanation 1 (Slide Layer)

		approaches in sity as applied		**	Tier 1" appro indicator wei habitat	ghted by	"Tier 2" approach, based on species richness and status	"Tier 3" approach, based on species abundance
Click on ea examples.	ch box an	d have a loo	k at their					
example 5							Example based on Norwegian N	Nature Index approach
	Habitat Area	Bird Population (x)	Species Richness (y)	Butterfly population (z)	Headline Indicator (HI)	Stock	Example of a biodiversity asset	
Indicator Weigh	ht	0.25	0.50	0.25	HI = 0.25x + 0.50y + 0.25z	Stock = HI * Area	Norwegian Nature Index appro	ach using imaginary data.
Open (2000)	5.0	0.90	0.80	0.70	0.8000	4.000	This accounting table presents areas and input indicator value	
Additions	1.0	0.00	0.10	0.15	0.0875	0.525	This is shown in the rows with	
	0.0	0.10	0.05	0.05	0.0625	0.375	To populate this table, informat	tion has been obtained on
Reductions				0.80	0.8250	4.950	three input indicators of species	
Reductions Close (2010)	6.0	0.80	0.85	0.00				
	6.0 +1.0	0.80	+0.05	+0.10	+0.0250	+0.950	ecosystem unit being considere orange rectangles.	


Explanation 2 (Slide Layer)

		100	by t		2 4	nd 3	
	Introduced species		Native	species			
		Unprotected		Rare and endangered	Total native species	Total species	"Tier 1" approach, using "Tier 2" approach, "Tier 3" approach indicator weighted by based on species based on species
Animals			-				habitat area richness and status abundance
Vertebrates							
- Mammals	15	2	112	20	114	129	
- Birds	10	0	458	33	458	468	
- Reptiles - Amphibians	2	0	202	26 9	202	204	
- Amphibians - Bony fish	1	56	51	9	51	52 60	Example from an Australian terrestrial area for year 2000 (Bond et al., 20
- Cartilazinous fish	NA	NA	NA	NA	NA	NA	
- Insects	0	11	2	0	13	13	This experimental accounting example provides a species account for the
Subtotal	32	69	825	88	894	926	Burdekin Natural Resource Management area, Queensland, Australia for the
Plants	376	5	3239	91	3244	6320	year 2000. This account is based on species richness measures for different
Subtotal	376	5	3239	91	3244	6320	species groups - identified with the orange rectangle. The account is support
Funzi	0	0	68	0	68	68	with information on the species threat status as well - identified by the green
Subtotal	0	0	68	0	68	68	rectangle.
Protista	0	0	148	0	148	148	
Subtotal	0	0	148	0	148	148	
TOTAL	408	74	4280	179	4354	4762	


Explanation 3 (Slide Layer)

					"Tior 4"	approach, using	"Tier 2" approach, "Tier 3" approa			
					indicator	weighted by bitat area		"Tier 3" approach, based on species abundance		
	1	An	imals		Plants	Headline	Example based on based on species abundance			
	Mammals	Birds	Reptiles	Invertebrates		Indicator (HI)	This accounting table presents some imaginary data changes in the relative abundance of different taxono			
Weight	u	v	x	у	z		groups between 2000 and 2010. An accrual approach			
Open (2000)	1.00	1.00	1.00	1.00	1.00		to set the reference condition (i.e. based on species			
Additions	0.05	0.00	0.00	0.15	0.10		abundance recorded when accounts were initiated) – indicated by the orange rectangle. The account preser			
Reductions	0.10	0.15	0.05	0.05	0.05		net change in relative species abundance for each gro			
Close (2010)	0.95	0.85	0.95	1.10	1.10		this is shown in the row identified by the green rectan			
	-0.05	-0.15	-0.05	+0.10	+0.05					
Net Change	-									

1.45 Last page

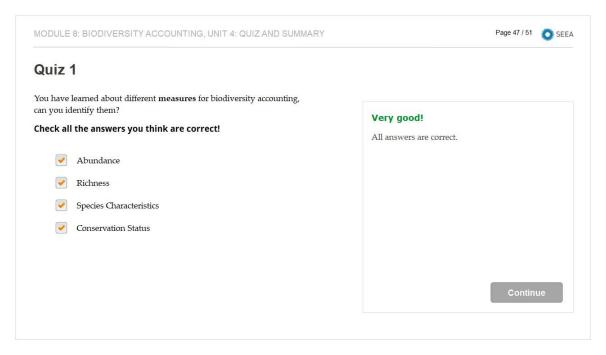
1.46 Module units

1.47 Quiz

(Multiple Response, 10 points, 1 attempt permitted)

MODULE	8: BIODIVERSITY ACCOUNTING, UNIT 4: QUIZ AND SUMMARY	Page 47 / 51	O SEEA
Quiz	1		
	learned about different measures for biodiversity accounting, lentify them?		
Check al	I the answers you think are correct!		
 Image: A start of the start of	Abundance		
	Richness		
~	Species Characteristics		
 Image: A start of the start of	Conservation Status		
	ОК		

Correct	Choice
х	Abundance
х	Richness
х	Species Characteristics
х	Conservation Status


Feedback when correct:

All answers are correct.

Feedback when incorrect:

All answers would have been correct.

Correct (Slide Layer)

Incorrect (Slide Layer)

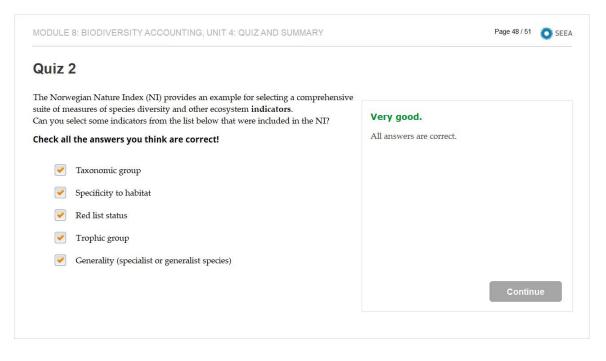
MODULE 8: BIODIVERSITY ACCOUNTING, UNIT 4: QUIZ AND SUMMARY	Page 47 / 51 💽 SEEA
Quiz 1	
You have learned about different measures for biodiversity accounting, can you identify them? Check all the answers you think are correct! Image: Abundance Image: Richness Image: Species Characteristics Image: Conservation Status	Not quite right. All answers would have been correct.
	Continue

1.48 Quiz

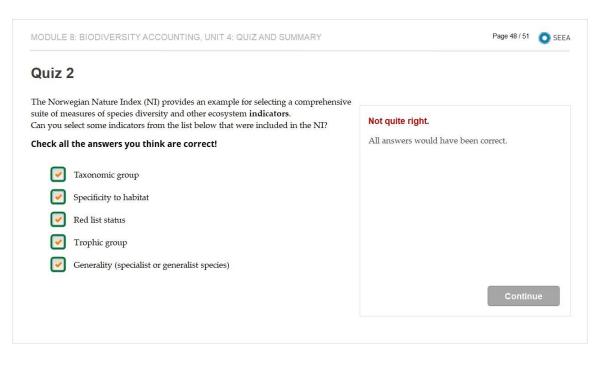
(Multiple Response, 10 points, 1 attempt permitted)

MODULE	8: BIODIVERSITY ACCOUNTING, UNIT 4: QUIZ AND SUMMARY	Page 48 / 51	O SEEA
Quiz 2	2		
suite of me	egian Nature Index (NI) provides an example for selecting a comprehensive asures of species diversity and other ecosystem indicators . elect some indicators from the list below that were included in the NI?		
Check all	the answers you think are correct!		
Image: A start of the start	Taxonomic group		
 Image: A start of the start of	Specificity to habitat		
~	Red list status		
Image: A start of the start	Trophic group		
 Image: A start of the start of	Generality (specialist or generalist species)		
	ОК		
f			Ũ

Correct	Choice
х	Taxonomic group
х	Specificity to habitat
х	Red list status
х	Trophic group
х	Generality (specialist or generalist species)


Feedback when correct:

All answers are correct.


Feedback when incorrect:

All answers would have been correct.

Correct (Slide Layer)

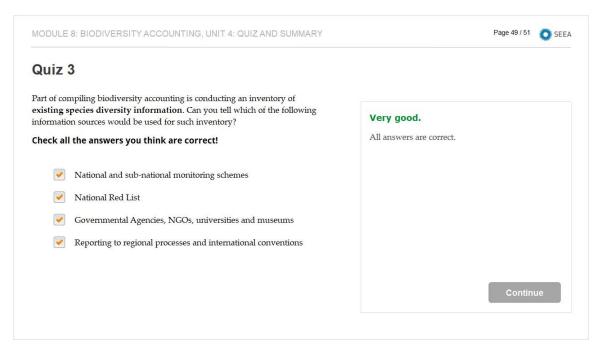
Incorrect (Slide Layer)

1.49 Quiz

(Multiple Response, 10 points, 1 attempt permitted)

MODULE	8: BIODIVERSITY ACCOUNTING, UNIT 4: QUIZ AND SUMMARY	Page 49 / 51	O SEEA
Quiz 3	3		
existing s	pilling biodiversity accounting is conducting an inventory of pecies diversity information. Can you tell which of the following n sources would be used for such inventory?		
Check all	the answers you think are correct!		
	National and sub-national monitoring schemes		
 Image: A start of the start of	National Red List		
~	Governmental Agencies, NGOs, universities and museums		
~	Reporting to regional processes and international conventions		
	ОК		
#			Ũ

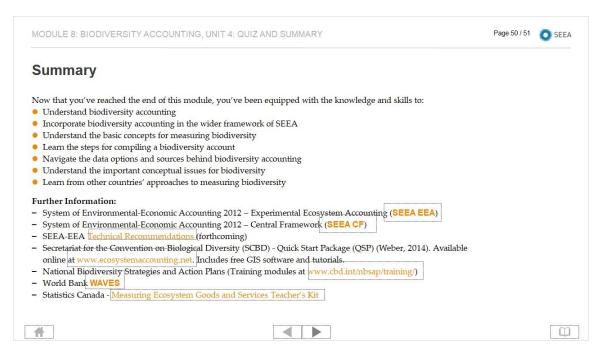
Correct	Choice
х	National and sub-national monitoring schemes
х	National Red List
х	Governmental Agencies, NGOs, universities and museums
х	Reporting to regional processes and international conventions


Feedback when correct:

All answers are correct.

Feedback when incorrect:

All answers would have been correct.


Correct (Slide Layer)

Incorrect (Slide Layer)

MODULE 8: BIODIVERSITY ACCOUNTING, UNIT 4: QUIZ AND SUMMARY	Page 49 / 51 💽 SEEA
Quiz 3	
Part of compiling biodiversity accounting is conducting an inventory of existing species diversity information. Can you tell which of the following information sources would be used for such inventory? Check all the answers you think are correct!	Not quite right. All answers would have been correct.
 National and sub-national monitoring schemes National Red List Governmental Agencies, NGOs, universities and museums Reporting to regional processes and international conventions 	
	Continue

1.50 Summary

1.51 References

ODULE 8: BIODIVERSITY ACCOUNTING, UNIT 4: QUIZ AND SUMMARY	Page 51 / 51	O SEE
References		
Alkemade, R., van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M., & ten Brink, B. (2009).		
GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems,		
12(3), 374-390. https://link.springer.com/article/10.1007/s10021-009-9229-5		
Bond, S., McDonald, J., & Vardon, M. (2013) Experimental Biodiversity Accounting in Australia. Paper for		
19th London Group Meeting, London, UK. 12-14 November 2013.		
https://unstats.un.org/unsd/envaccounting/londongroup/meeting19/LG19_16_1.pdf		
Brooks, T. M., R. A. Mittermeier, C. G. Mittermeier, G. A. B. Da Fonseca, A. B. Rylands, W. R.Konstant, P.		
Flick, J. Pilgrim, S. Oldfield, G. Magin, and C. Hilton-Taylor. 2002. Habitat Loss and Extinction in the		
Hotspots of Biodiversity. Conservation Biology 16:909-923.		
http://onlinelibrary.wiley.com/doi/10.1046/j.1523-1739.2002.00530.x/abstract		
Certain, G., Skarpaas, O., Bjerke, JW., Framstad, E., Lindholm, M., Nilsen, JE., Nybø, S. (2011). The		
Nature Index: a general framework for synthesizing knowledge on the state of biodiversity. PloS One,		
6(4), e18930. https://doi.org/10.1371/journal.pone.0018930		
IUCN. (2012a). Guidelines for Application of IUCN Red List Criteria at Regional and National Levels:		
Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.		
http://s3.amazonaws.com/iucnredlist-newcms/staging/public/attachments/3101/reg_guidelines_en.pdf		
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species		
geographic distributions. Ecological modelling, 190(3), 231-259.		
Scholes, R. J., & Biggs, R. (2005). A biodiversity intactness index. Nature, 434(7029), 45-49.		
http://www.nature.com/nature/journal/v434/n7029/abs/nature03289.html?foxtrotcallback=true		
Weber, J., 2014. Ecosystem Natural Capital Accounts: A Quick Start Package. 77 (Technical Series).		
Montreal: Secretariat of the Convention on Biological Diversity. https://www.cbd.int/doc/publications/cbd-ts-77-en.pdf		
hups://www.cod.mi/doc/pdoitadons/cod-is-//-en.pdr		