

Biophysical modeling for ecosystem accounting

Bram Edens, PhD.

United Nations Statistics Division

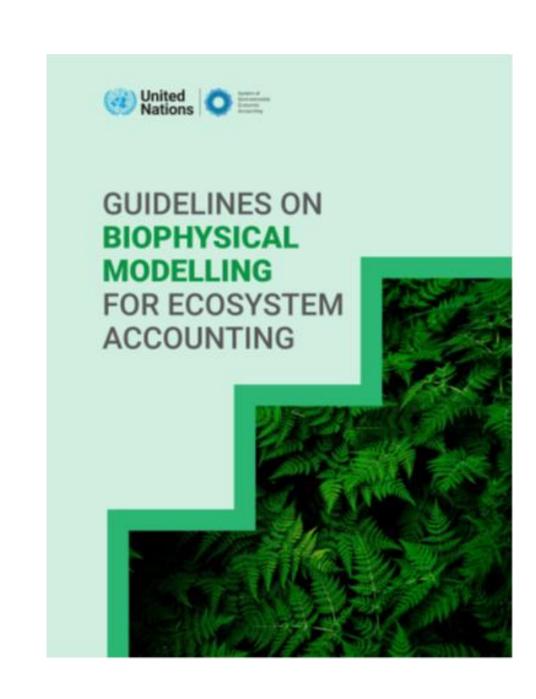
Outline

- Biophysical modelling (what; why?)
- Guidelines on biophysical modeling for SEEA Ecosystem Accounting
- Key elements
 - > Modelling techniques
 - > Main modelling platforms
- Modelling ecosystem services
 - > Example from South Africa
- Conclusions

What is biophysical modelling?

- Biophysical modelling: the quantitative estimation of biophysical phenomena or processes that are difficult to fully observe directly.
- Distinguish between models and modelling platforms.
 - > Models are highly diverse in purpose and approach, many are set-up to analyse a specific problem (e.g. a model to estimate carbon sequestration).
 - > Modelling platforms: tools consisting of multiple models
- Biophysical models can be useful for compiling many of the extent, condition, as well as supply and use tables and maps produced in SEEA EA.
- Biophysical modelling may be instrumental, it can never replace data collection processes:
 - > Earth observation data sets need ground-truthing
 - > Models rely on in situ data (adjust model setup to local circumstances / calibration)

Why do we need modelling?


- Ecosystem accounting as spatially explicit requires maps with full spatial cover of ecosystem types, condition variables, and ecosystem services flows
- Data needed for ecosystem accounts not usually captured in regular data sources
 - > Measuring ecosystem services directly is often difficult or costly to measure *in situ*.
- For some services or condition indicators, data are only available for specific locations
 - > Spatialize tabular data (e.g. visitors, or water quality
- Usually, data from various sources and scales need to combined (e.g., point field data and satellite data)

Biophysical guidelines (1/3)

- Why developed?
 - > Diverse models and tools have proliferated over the past decade and are constantly evolving.
 - > Most models not developed specifically for accounting purposes, many models produce results can be used directly in SEEA EA or produce results that can be modified for use in SEEA EA.
- Audience:
 - > Ecosystem accounts compilers + managers
 - > Assumes familiarity with SEEA Ecosystem Accounting but does not assume knowledge of biophysical modelling
- Process:
 - > Under auspices of UNCEEA
 - > Global consultation in 2021
 - > Adopted by UN Statistical Commission

Biophysical guidelines (2/3)

- 1. Introduction
- 2. Process guidance for agencies
- 3. Modeling for ecosystem accounts
- 4. Modeling for extent accounts
- 5. Modeling for condition accounts
- 6. Modeling for ecosystem service accounts
- 7. Data quality
- 8. Future of biophysical modeling

NB: Living document: see for latest tables:

https://seea.un.org/ecosystem-accounting/biophysical-modelling

Annexes

- 1. Global data sources + data portals
- 2. Modelling techniques
- 3. Cartography essentials
- 4. Literature list (16 pages)

Biophysical guidelines (3/3)

- Tiered approach
 - > recognizes countries are in different circumstances (data availability + expertise)
 - > may differ per ES
 - > progress over time
- Decision trees to facilitate choices

TIER 1

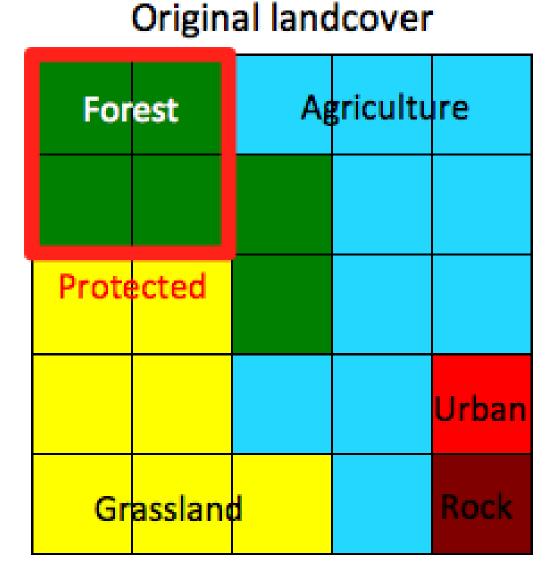
Ecosystem services modelled from global datasets with no or little user input data

TIER 2

Ecosystem services modelled from national datasets customized for national contexts, some validation

TIER 3

Ecosystem services modelled with local data and direct surveys, better validation, and best available tools



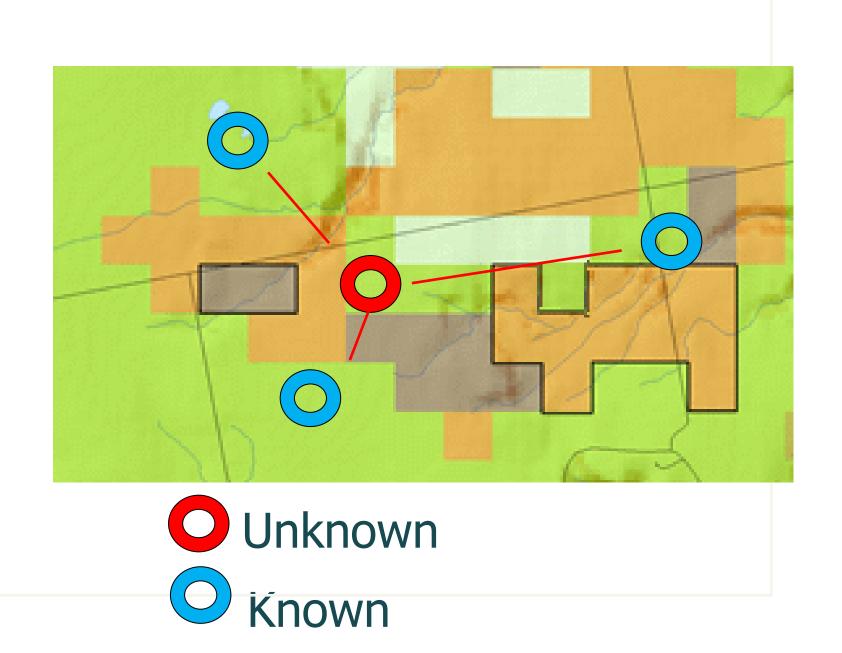
Modelling techniques

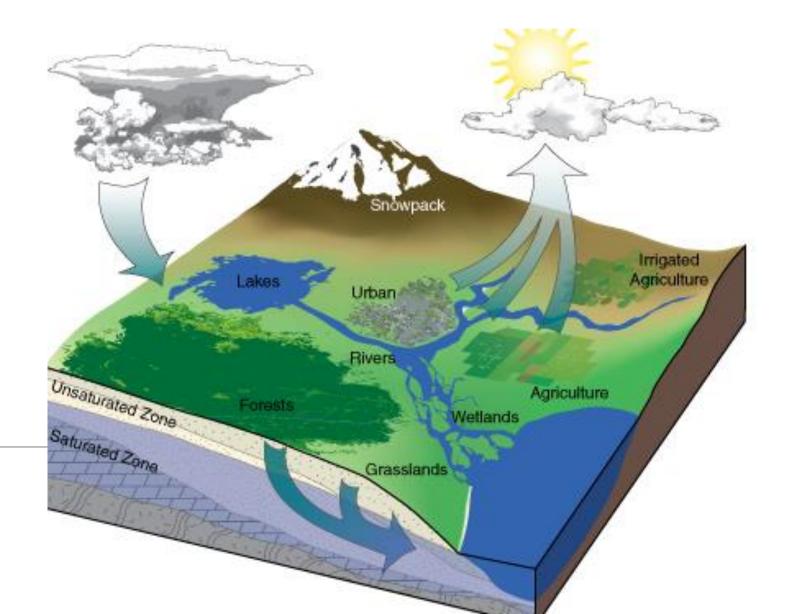
Model technique	Definition	Data needs	Efforts
Look-up Table	Specific values for an ecosystem service or condition variable are attributed to every pixel in a certain class, usually a land cover, land use, or ecosystem type class.	Limited	Easy
Spatial interpolation	Creates surfaces from measured points	Moderate	Moderate
Geostatistical models	Statistical algorithms predict the value of un-sampled pixels based on nearby pixel values in combination with other characteristics of the pixel.	Moderate	Moderate
Statistical models	Values of pixels are assigned based on a set of underlying variables. The relation between the value and the independent variables is developed with a regression analysis.	Moderate	Moderate
Dynamic systems (such as process-based models)	Dynamic systems modelling uses sets of differential equations to describe responses of a dynamical system to all possible inputs and initial conditions. The equations include a set of state (level) and flow (rate) variables in order to capture the state of the ecosystem, including relevant inputs, throughputs and outputs, over time. Most process-based models are examples of dynamic systems models that predict ecosystem services supply or other variables based on a mathematical representation of one or several of the processes describing the functioning of the ecosystem.	High	High
Machine learning	A type of artificial intelligence. Machine learning uses training data to	High	Moderate
SEEA	build algorithms to make predictions without explicit programming.		

Example modelling techniques (1/2)

- Look-up table:
 - > Attribute values for an ecosystem service (or other measure) to every Spatial Unit in the same class (e.g., a land cover class).
 - > Example: Carbon storage
 - one ha of forest = X tonnes
 - attribute to each ha of forest

Source: Natural Capital Project


- Statistical model:
 - > Estimate ecosystem services, asset or condition based on known explanatory variables such as soils, land cover, climate, distance from a road, etc., using a statistical relation.
 - > Example: **Habitat quality**value = f(land cover, population, distance to roads, climate,..)



Example modelling techniques (2/2)

- Geostatistical model
 - > Use algorithms to predict the measure of unknown locations on the basis of measures of nearby known measures:
 - > Spatial interpolation
- Dynamic systems (such as process-based models)
 - > Predict ecosystem services based on modelling of processes involved in supplying the service:
 - > Example:
 - Hydrological model to model water flow regulation
 - SWAT

Software and tooling

- Depending on types of accounts prioritized, available data and expertise in the country, different ecosystem extent, condition and service models may require different software.
- GIS software for displaying spatial data will likely be needed regardless
- Two most widely used GIS systems are:
 - > ArcGIS: commercial product
 - > QuantumGIS (also called QGIS): freeware
- Which one to select depends upon context:
 - > Which systems are already used in the government agencies supplying / processing data?
 - > Budget
- Also other web-based platforms to consider such as Google Earth Engine
- Programming languages like R or phyton have several packages for spatial analysis that can facilitate efficient workflows in the production of results and reports

Overview of platforms with potential use in SEEA EA

Modelling platform	Primary goal of platform	Coverage
ARIES (Villa et al., 2014)	ARIES (Artificial Intelligence for Ecosystem Services). Provides easy access to data and models through a web-based explorer and using Artificial Intelligence to simplify model selection, promoting transparent reuse of data and models in accordance with the FAIR principles.	Extent, Condition, Ecosystem Services
Data4Nature	Data4Nature (formerly known as EnSym - Environmental Systems Modelling Platform) is a decision support tool that is designed to answer questions about where organizations should invest in their natural resources. Data4Nature is specifically designed with SEEA EA in mind.	Extent, Ecosystem Services
ESTIMAP (Zulian et al., 2018)	ESTIMAP (Ecosystem Services Mapping tool) is a collection of models for mapping ecosystem services in a multi scale perspective (it can be applied at different scales) (Zulian et. al 2018).	Ecosystem Services
InVEST (Sharp et al., 2018)	A compilation of open-source models for mapping and valuing ecosystem services. InVEST is the flagship tool of the Natural Capital Project and has been the most widely used ecosystem service modelling tool globally.	Ecosystem Services, Condition
i-Tree	i-Tree is a tool developed by the USDA Forest Service with capabilities of modelling ecosystem services related to trees, particularly in urban settings (i.e. air filtration, carbon storage urban heat island mitigation, and rainfall interception and infiltration).	Ecosystem Services (forest related)
Nature Braid (Jackson et al., 2013)	The Nature Braid (formerly LUCI/Polyscape) provides a suite of high spatial resolution ecosystem services models designed to improve decision-making around restoration and land management. The Nature Braid is particularly well suited for mapping soil, water and chemical transport processes at high resolution.	Extent, Condition, Ecosystem Services (hydrological, soil)

Platforms: additional considerations

• There are large differences between these modelling platforms, in terms of scope/level of detail/accuracy/data needs and flexibility of the modelling approaches

Advantages:

- > Models often rely on similar input data across services (e.g. land cover) -: efficiency
- > Easy entrance points for novice modelers, suitable for countries with fewer resources
- > Easier to compare outputs across countries.

• Limitations:

- > Some multi-service platforms require collaboration with model developers.
- > In some cases models may be overly simplified to ensure applicability under a wide range of conditions which are not necessarily present in the ecosystem accounting area.
- > Using models created and maintained by outside organizations creates a risk that these models may evolve or no longer be available in the future.
 - Many of these modelling platforms have been around a decade or more suggesting they have some staying power

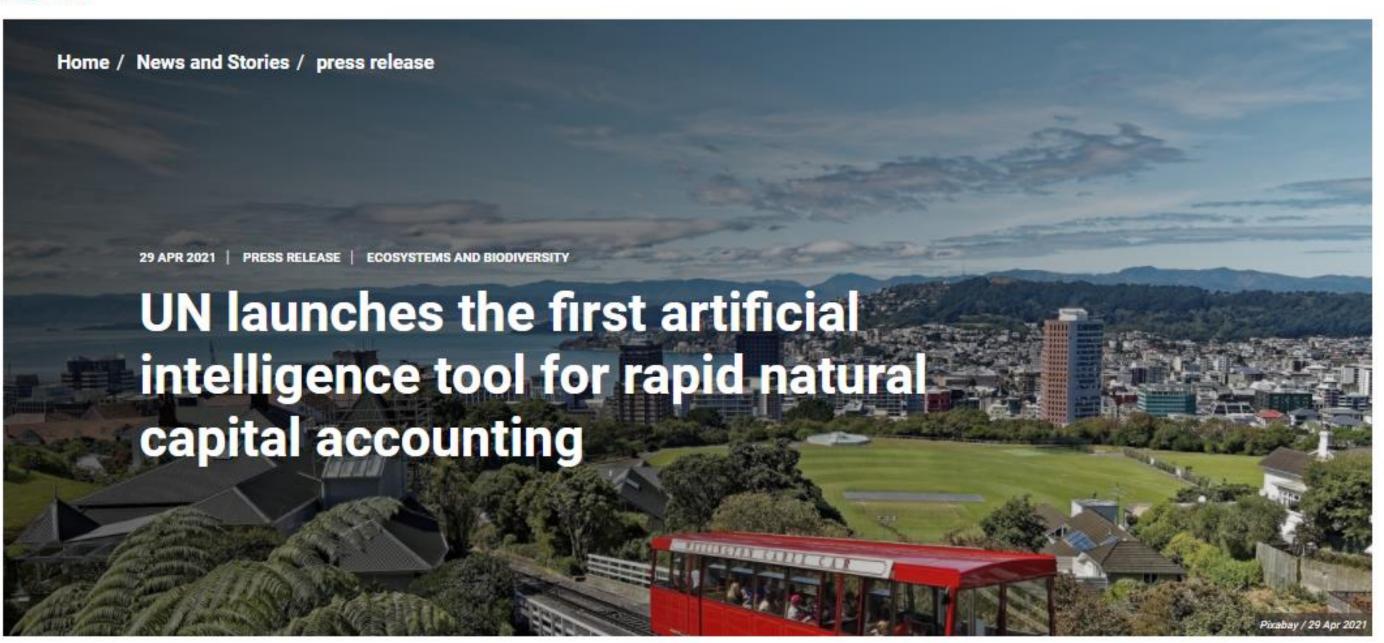
Also. many platforms are open source (e.g. ARIES, InVEST, and the Nature Braid), which may alleviate some of these issues.

ARIES for SEEA Explorer

EXCELENCIA MARÍA DE MAEZTU Sustainability, that's it!

- ARrtificial Intelligence for Environment and Sustainability
- Application on Aries platform (by Basque Centre for Climate Change):
 - Uses global data and models to generate a basic set of ecosystem accounts
 - Enables compilation anywhere on earth (country; watershed;)
 - Al -> machine reasoning to construct "best available model"
 - Aries has around 150 global data sets, many of them based on EO (e.g. land-cover; elevation; precipitation)
 - Improvement with national data where available
 - Transparent (metadata + download)

https://seea.un.org/content/aries-for-seea



Where we work >

What we do v

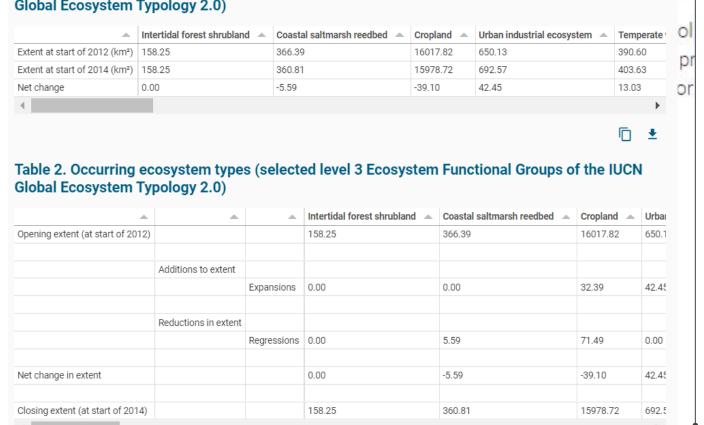
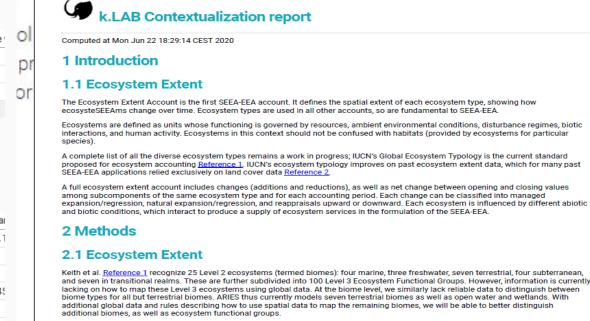



Table 1. Occurring ecosystem types (selected level 3 Ecosystem Functional Groups of the IUCN

> 0.05 >0

> 0.05 >0

> 0.05 >0

landcover:Forest

landcover:Shrubland

andcover:BareArea landcover:LichenMoss

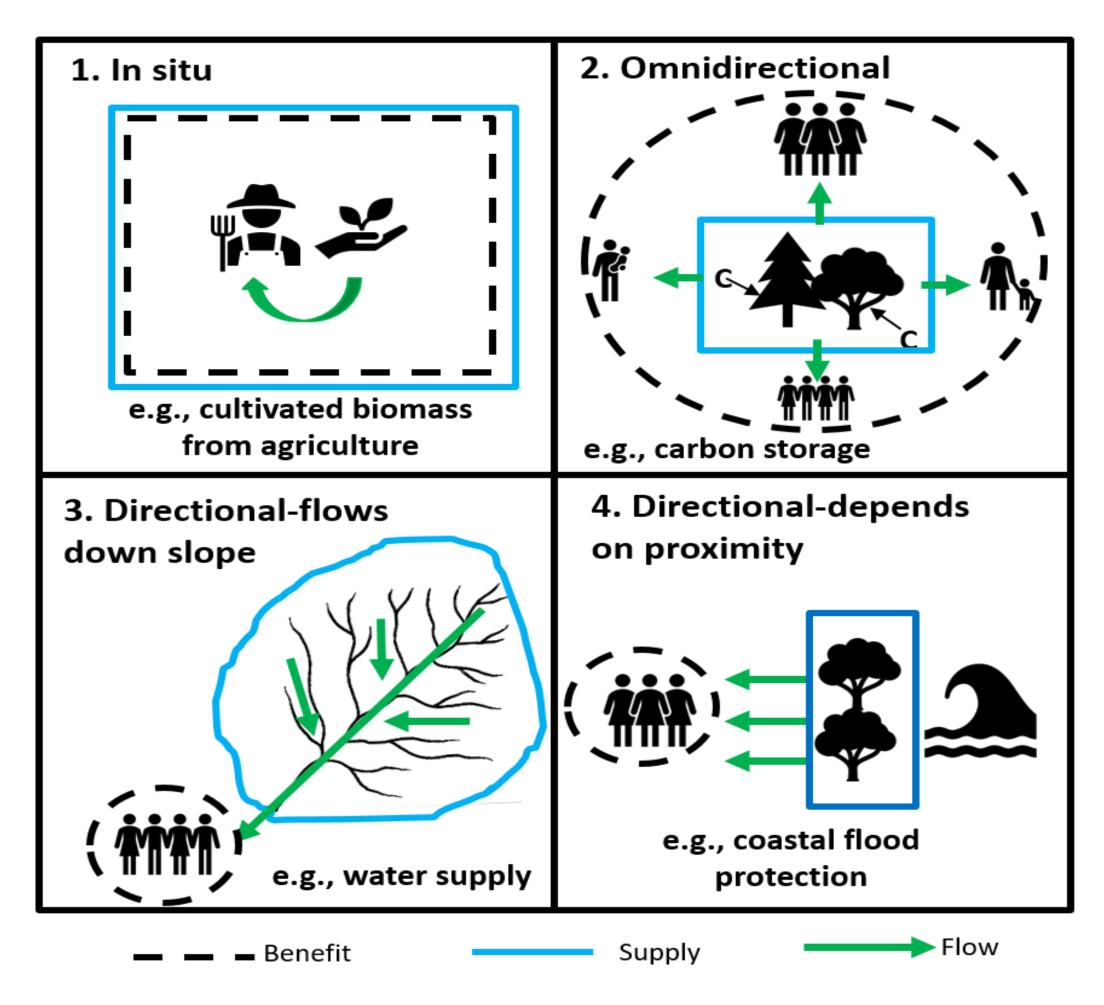
andcover:Grassland

andcover:SparseVegetat

aridity mean annual temperature mean july temperature

ecosystem_type

ecology.incubation:Tropica


ecology.incubation:Shrubla

ecology.incubation:Shrubla

ecology.incubation:Savann

Modelling Ecosystem Services

- ES: both a supplier and user
 - > The supply may occur in different location (service providing areas) from benefits (service benefiting areas).
- Different ecosystem services may hold certain spatial characteristics and may also follow certain flow paths
 - > In situ
 - > Omnidirectional ecosystem
 - > Directional: downstream / downslope
 - > Directional: spatial proximity.

Coverage by selected modeling platforms

		ARIES	InVEST	LUCI	ESTIMAP	Data4Nature	iTree
Provisioning ser	vices						
Bion	nass pr Crop provisioning	X	Х	i		X	
	Grazed biomass provisioning					X	
	Timber provisioning	X				X	
	Non-timber forest products and other biomass provisioning	m					
	Fish and other aquatic products provisioning		X				
Wate	er supply	Х		Х		X	
Gene	etic material						
Regulating and r	maintenance services						
Glob	al climate regulation services	X	Х	Х		X	X
Rain	Rainfall pattern regulation services					X	
Loca	Local (micro and meso) climate regulation services		i			X	X
Air fi	Air filtration services				X		X
Soil	Soil erosion control services		X	Х	X	X	
Wate	er purification services		X	Х	X	X	
Wate	er flow regulation services		X	i	X	X	
Floo	d mitigation services (coastal or riverine)	X	i		X	X	
Storr	m mitigation services				X		X
Nois	e attentuation services						
Polli	nation services	X	X		X		
Pest	Pest control services				X		
Nurs	Nursery population & habitat maintenance services				X	X	
Soil	Soil waste remediation services						
Othe	er regulating and maintenance services					X	
Cultural services							

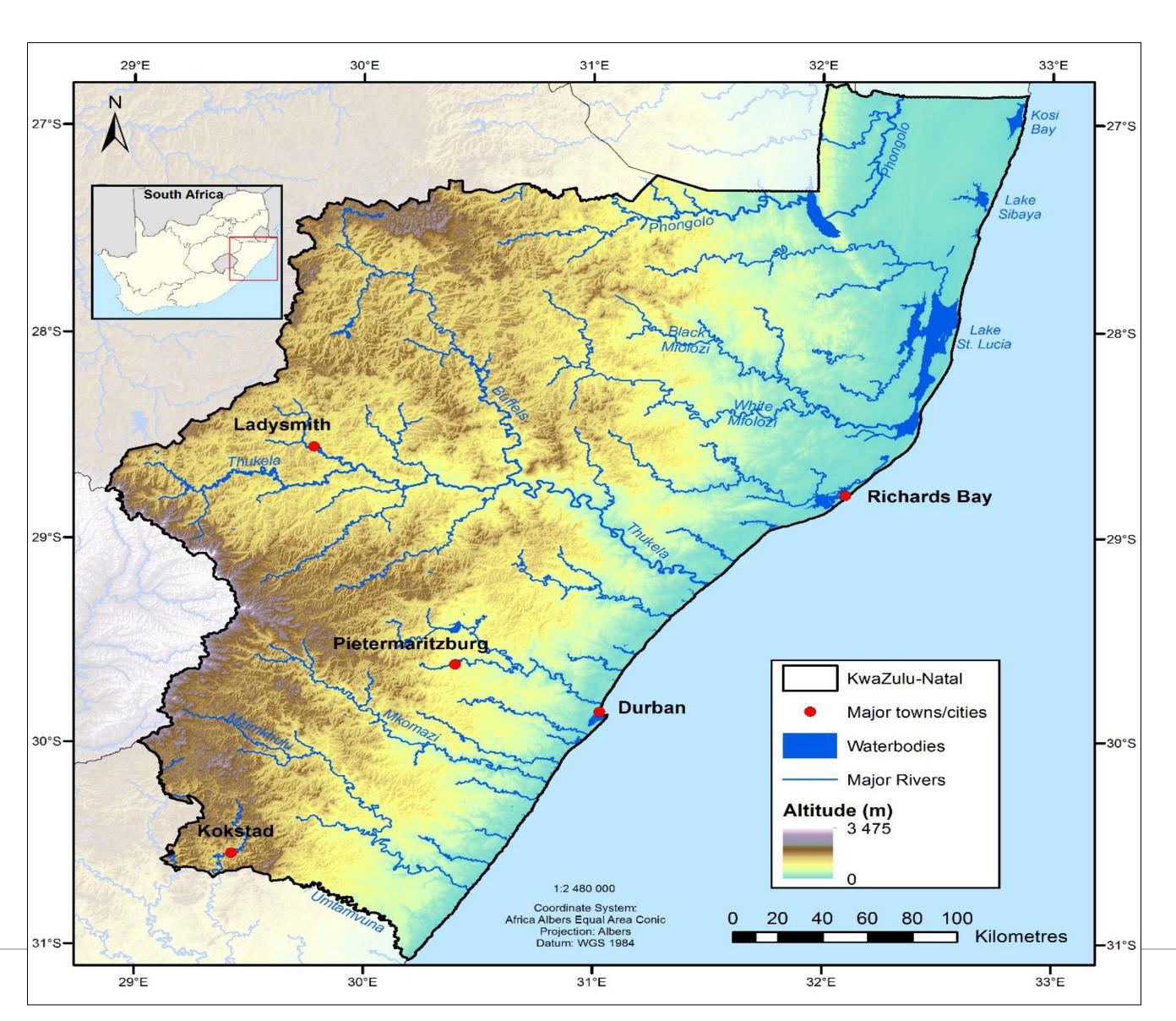
Cultural se

Recreation-related services

Example: South Africa (1/10)

- Output of the NCAVES project
- Modelled 11 different ES for 2005 and 2011
- Kwazulu-Natal (KZN) province
- Physical + monetary

Towards a method for accounting for ecosystem services and asset value:


Pilot accounts for KwaZulu-Natal
South Africa, 2005-2011

Updated Final Report January 2021



Turpie, J.K., Letley, G., Schmidt, K., Weiss, J., O'Farrell, P. and Jewitt, D.

Example: South Africa (2/10)

Example: South Africa (3/10)

ES1: Wild resources

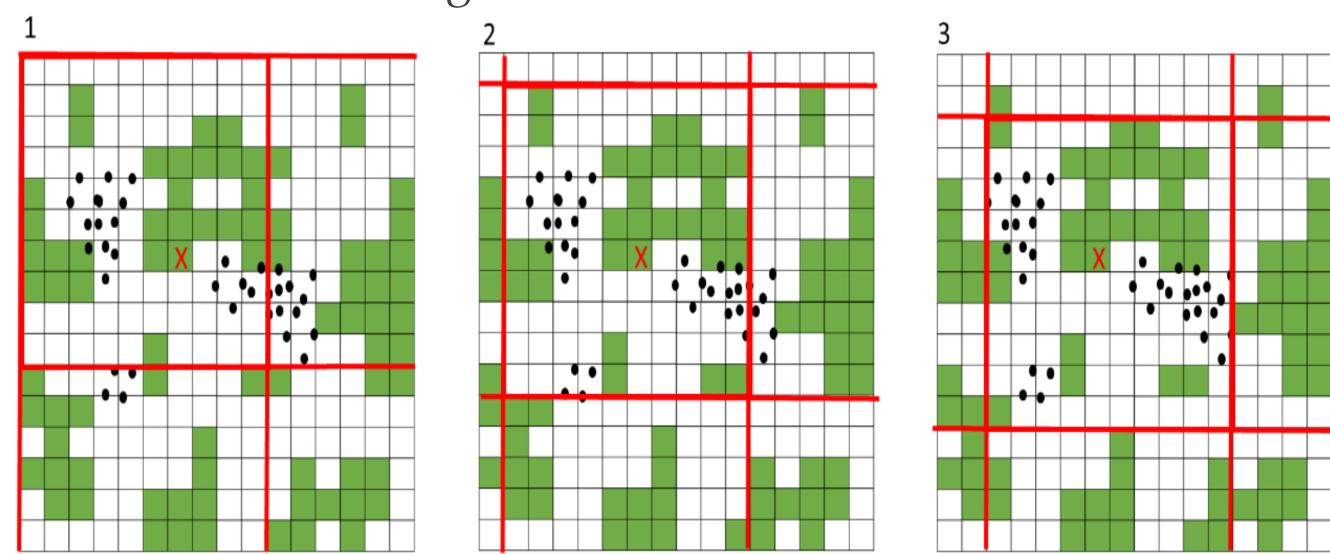
- People in KZN use hundreds of species of plants and animals for food, medicine, energy and raw materials.
- For the purposes of this study and based on the nature of the data, the resources were grouped

	Purpose	Group		
Wild plant resources	Nutrition and health	Wild plant foods and medicines		
	Energy	Wood fuel		
	Raw materials	Grass		
		Reeds and sedges		
		Palm leaves		
		Poles and withies		
		Timber		
		Wood for carving/curios		
Wild animal resources	Nutrition	Terrestrial birds and animals		
		Fish and other aquatic organisms		

• Step 1: Quantities demanded

- > Estimated at the <u>census sub-place</u> (~village) level based on household survey data and census data on numbers of households and types of dwelling.
- > Relevant census data: population, number of households, average household size, number of traditional dwellings, number of informal dwellings, households using wood, number of households collecting water from rivers and streams, and number of households using wood for heating and cooking.

Example South Africa (4/10)

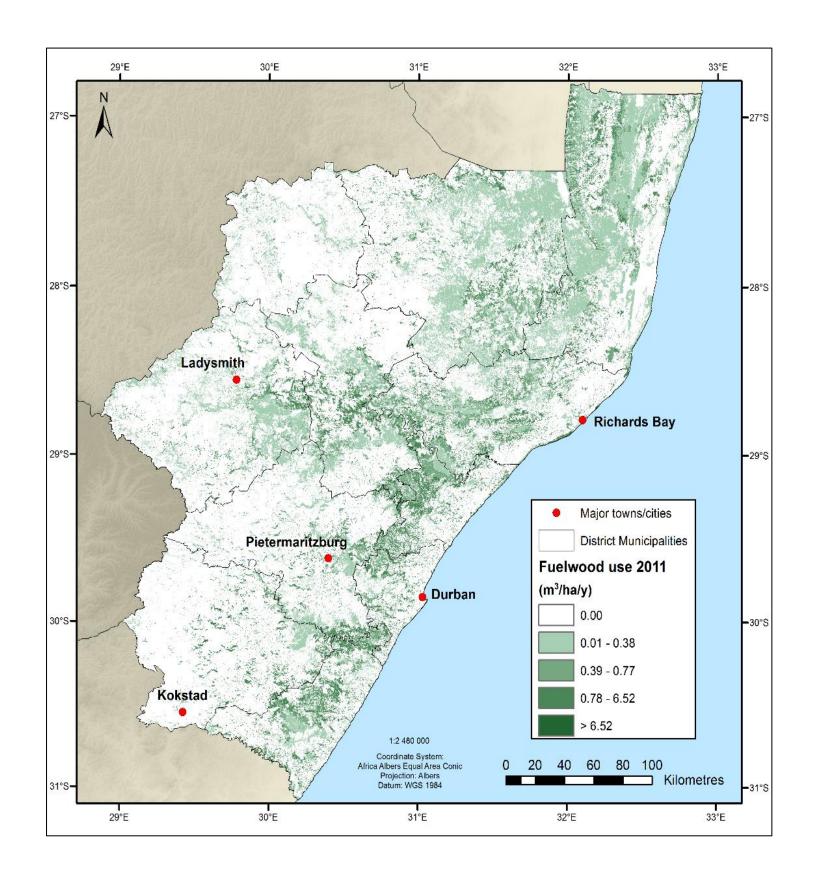

- Step 2: Aggregate potential household demand estimated using additional information but also statistical models
 - > To relate average use to household characteristics,
 - > in this way, the total demand (e.g. kg/y, m3/y) for each resource was estimated for each sub-place
- Step 3: Estimate the supply:
 - > Estimated using vegetation maps

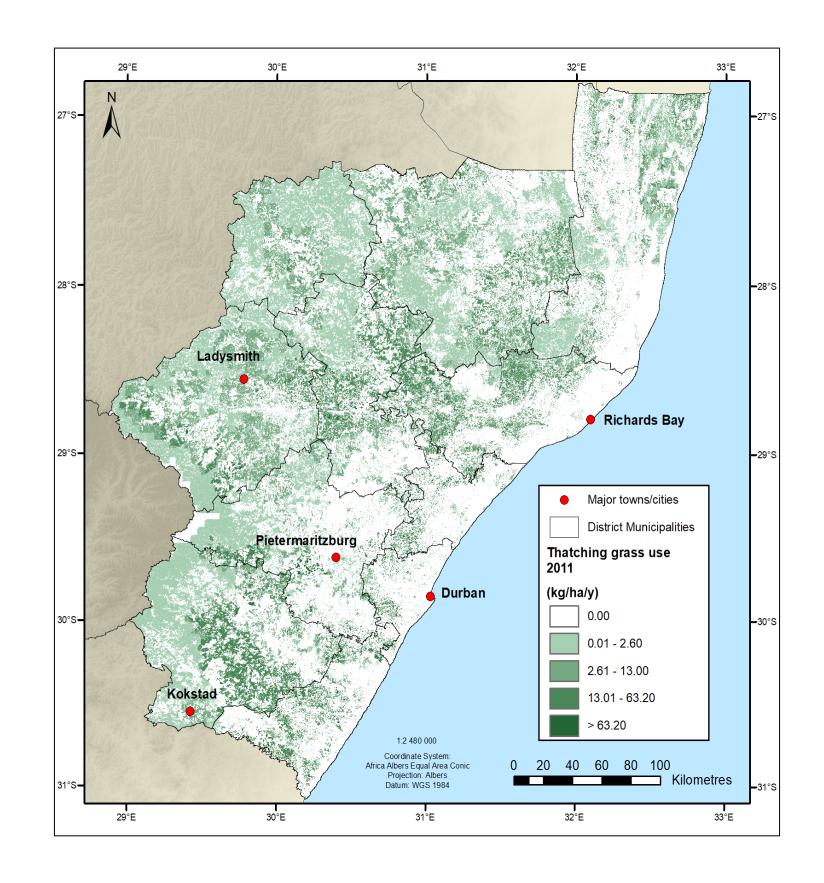
Resource group	Method/assumptions	Number of studies used	Other information		
Fuelwood	hh using fuelwood; 3000 kg/hh/year	18	Converted kg/y into m³/y		
Poles & withies	66% hh, 200 kg/hh/year	12	using avg. wood density of		
Timber & wood	4% hh; 900 kg/hh/year	3	0.855 g/cm ³ (FAO)		
Grass	33% hh; 76 bundles/hh/year	7	Grass bundle = 4.9 kg		
Reeds & sedges	Turpie <i>et al.</i> (2010a) model	2	Reed bundle = 7 kg		
Palm leaves	1.2% trad. hh; 660 leaves/hh/year	2	Each leaf provides 0.31 kg of weaving material		
Wild fruits	Turpie <i>et al.</i> (2010a) model	1			
Wild vegetables	75% hh; 20 kg/hh/year	9			
Medicines	26% hh; 32 kg/hh/year	4			
Wild animals	Turpie <i>et al.</i> (2010a) model	1			
Wild birds	Turpie <i>et al.</i> (2010a) model	1	Avg. bird weight of 0.9kg		
Fish	Turpie <i>et al.</i> (2010a) model	1			

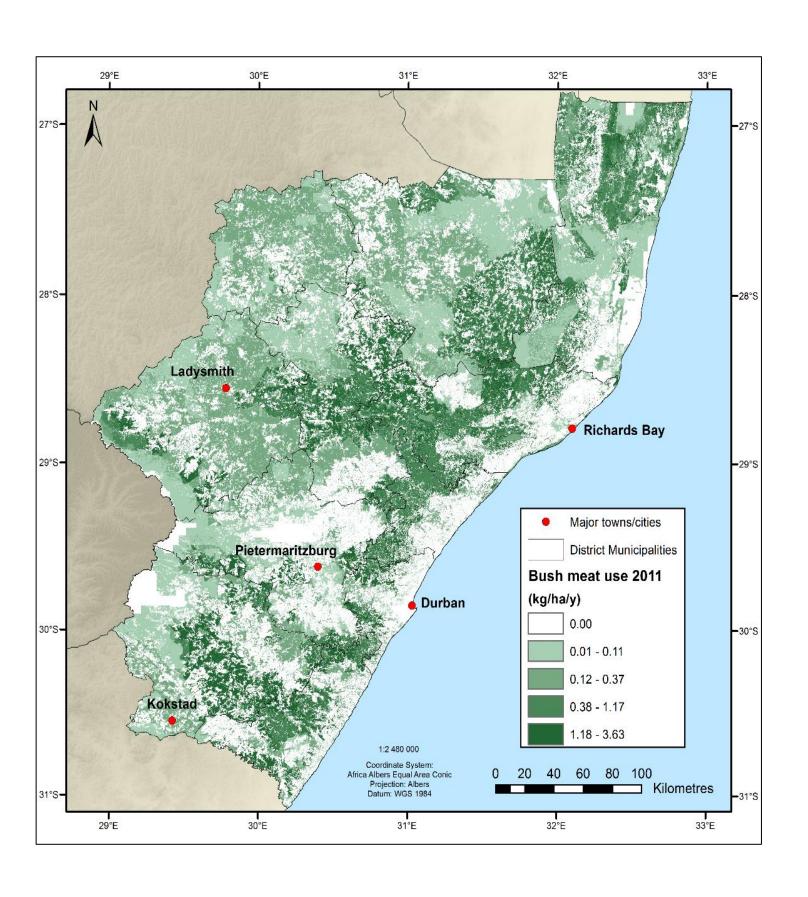
- > All harvestable resources were considered fully available and accessible within areas under communal land tenure.
- > Availability reduced to 10% of standing stocks in protected areas and for natural land under private ownership, such as commercial rangelands or wildlife ranches.

Example South Africa (5/10)

- Step 4: Model actual amount of wild resources harvested for subsistence using a geostatistical model:
 - > estimated based on the minimum of the estimated demand and the estimated available stocks of resources within a specified distance of the demand source
 - > an estimated average travelling distance to harvest natural resources of about 6 km
 - > implemented with a "running mean" model




Source: Turpie et


al. 2021

Example South Africa (6/10)

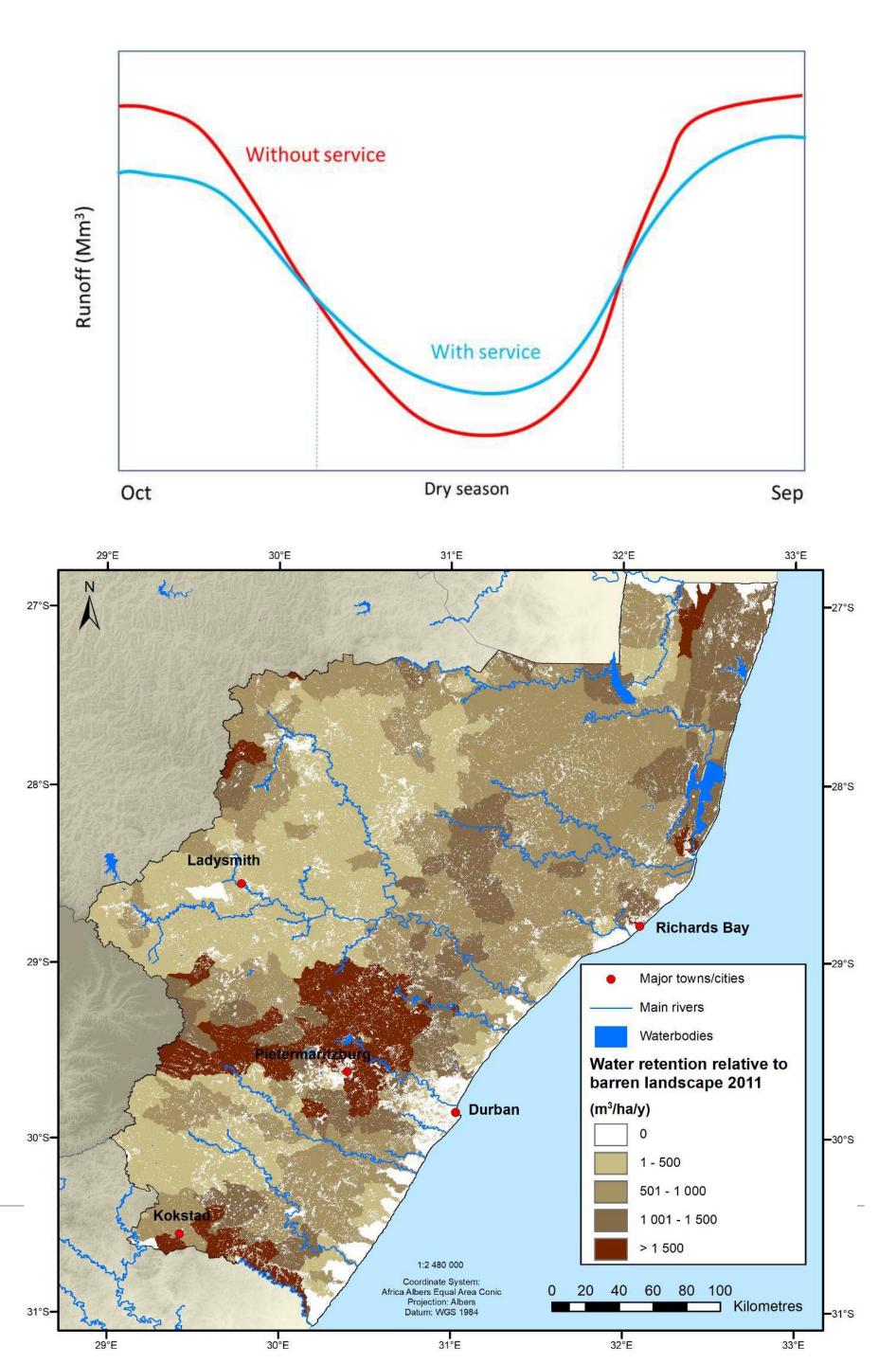
Results in form of maps

Source: Turpie et al. 2021

Example South Africa (7/10)

- After spatial overlay with ecosystem extent map
- Summarized as physical supply and use tables

Biome			Indian				
Resource	Freshwater ecosystems	Grassland	Ocean Coastal Belt	Savanna	Forests	Estuaries	TOTAL
Fuelwood (m³)	3 341	663 349	223 178	755 244	247 315	158	1 892 584
Poles (m³)	163	29 645	10 948	28 560	11 165	8	80 489
Timber (m³)	20	2 643	999	3 491	8 567	3	15 723
Thatching grass (tonnes)	33	25 973	4 935	17 383	59	3	48 384
Reeds & sedges (tonnes)	752	3 801	1 508	2 371	324	22	8 779
Palm leaves (tonnes)	_	_	292	_	_	-	292
Wild foods/med (tonnes)	121	14 483	4 951	13 113	2 327	6	35 001
Bushmeat (tonnes)	6	1 542	338	1 934	179	0	3 998
Fish (tonnes)*	42	315	75	298	22	8	759



Example South Africa (8/10)

ES 2: Water flow regulation

- KZN water flow regulation modelled with SWAT process-based model
- ES measured as difference in infiltration relative to a barren scenario, in m3 per ha. This was obtained from the SWAT output "Percolation", given in mm.
- Main intuition: ecosystems function as 'sponges' mitigating peaks and ensuring higher base flows
- Modeled at sub river basin level
- Results:
 - > Maps
 - > Tables

Example: South Africa (9/10)

- All 11 ES modeled spatially
- After integration, physical supply and use tables (and monetary SUTs + monetary asset account

Table 5.1. Total biophysical supply per ecosystem type 2005

Resource	Freshwater ecosystems	Grassland	Indian Ocean Coastal Belt	Savanna	Forests	Estuaries	Cultivated	Urban green space	Total
Wood products (m³)	3 523	695 638	235 125	787 294	267 047	169			1 988 796
Non-wood products (tonnes)	834	46 494	11 489	34 952	2 911	38			96 718
Livestock production (LSU)	1 716	684 698	52 162	289 663	2 010	340			1 030 589
Crop production (tonnes)							43 305 781		43 305 781
Experiential value (R millions)	14	237	179	218	55	24	85	885	1 698
Carbon storage (Tg C)	5	512	61	348	33	0	279		1 237
Pollination (R millions)	0	12	6	31	2	0			51
Flow regulation (million m³)	78	3 315	421	2 198	634	36			6 682
Flood attenuation (R millions)								31	31
Sediment retention (million tonnes)	2	45	6	27	18	2			99
Water quality amelioration (tonnes P)	-	3 829	525	5 394	97	6			9 850

Example South Africa (10/10)

The potential costs and benefits of addressing land degradation in the Thukela catchment, KwaZulu-Natal South Africa Report of the NCAVES Project

• Policy use:

- > Accounts applied in policy scenario analysis
- > Cost-benefit analysis of addressing land degradation in the Thukela catchment
- Key outcomes:
 - > Halting and reversing ecosystem degradation has positive net economic benefits
 - > Preventing degradation now is more cost effective than fixing it later.
 - > In summary, the benefits of restoring the Thukela basin would outweigh the costs.

OVID-19 IN SA NEWS POLITICS OPINION ARTS & CULTURE EDUCATION HEALTH ENVIRONMENT PODCASTS WEBIT

ENVIRONMENT

It pays to save the Thukela River catchment

Sheree Bega 17 Jul 2021

Benefits: The Wagendrift Dam on the Bushmans River, a tributary of the Thukela River. Rehabilitating the Thukela River catchment in KwaZulu-Natal would reduce soil erosion, improve the grasslands and water supply, all of which

Conclusions

- There is no 'one size fits all'; choice of approach, model, tools, will depend on country specific circumstances
- Oftentimes we need a combination of techniques, models (platforms)
- Tiers allow for a growth model of accounts compilation
- Biophysical modelling may be instrumental, it can never replace data collection processes

THANK YOU

seea@un.org // https://seea.un.org/

