Theoretical developments of the comprehensive (or “green”) national accounting literature

Geir B. Asheim

Department of Economics
University of Oslo

Expert meeting on Ecosystem Valuation in the context of Natural Capital Accounting
German Federal Agency for Nature Conservation – BfN
Bonn 24–26 April 2018
Introduction

What is income?

Definition of income

Results

Purpose

Consumers' surplus

References
Many practical applications use wealth-based measures
Many practical applications use wealth-based measures

- **Income**: Interest on wealth
- **Savings**: Change in wealth
Introduction

Many practical applications use wealth-based measures

- **Income**: Interest on wealth
- **Savings**: Change in wealth
Introduction

- Many practical applications use wealth-based measures
 - Income: Interest on wealth
 - Savings: Change in wealth

Introduction

- Many practical applications use wealth-based measures
 - Income: Interest on wealth
 - Savings: Change in wealth

- Theoretical developments from Hicks (1946, Ch. 14), via Samuelson (1961) and Weitzman (1976), to Sefton & Weale (2006) support...
 - Income: PV of future interest on consumption
Introduction

- Many practical applications use wealth-based measures
 - Income: Interest on wealth
 - Savings: Change in wealth

 - Income: PV of future interest on consumption
 - Savings: PV of future changes in consumption
Green national accounting
G.B. Asheim

Introduction
What is income?
Definition of income
Results
Purpose
Consumers’ surplus
References

Income as interest on wealth

Income in the tradition of Fisher (1906) and Lindahl (1933, Sect. II) is associated with interest on wealth, where wealth is PV of future consumption.

Problems:
- Non-constant interest rates
- Capital gains

Illustration:
Models of capital accumulation and resource depletion where the interest rate decreases & the resource appreciates.
Income as interest on wealth

Income in the tradition of Fisher (1906) and Lindahl (1933, Sect. II) is associated with interest on wealth, where wealth is PV of future consumption.
Income as interest on wealth

Income in the tradition of Fisher (1906) and Lindahl (1933, Sect. II) is associated with interest on wealth, where wealth is PV of future consumption.

Problems:
Income as interest on wealth

Income in the tradition of
Fisher (1906) and Lindahl (1933, Sect. II)
is associated with interest on wealth,
where wealth is PV of future consumption

Problems:

- Non-constant interest rates
Income as interest on wealth

Income in the tradition of Fisher (1906) and Lindahl (1933, Sect. II) is associated with interest on wealth, where wealth is PV of future consumption.

Problems:

- Non-constant interest rates
- Capital gains
Income as interest on wealth

Income in the tradition of Fisher (1906) and Lindahl (1933, Sect. II) is associated with interest on wealth, where wealth is PV of future consumption.

Problems:
- Non-constant interest rates
- Capital gains

Illustration:
Models of capital accumulation and resource depletion where the interest rate decreases & the resource appreciates.
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 1
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 1

Indicator of impoverishment:
Stationary equivalent of future consumption
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 1

Indicator of impoverishment:
Stationary equivalent of future consumption

Income (Hicks, 1946, “income no. 3”) is associated with the stationary equivalent
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 1

Indicator of impoverishment:
Stationary equivalent of future consumption

Income (Hicks, 1946, “income no. 3”) is associated with the stationary equivalent

Problems:
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 1

Indicator of impoverishment:
Stationary equivalent of future consumption

Income (Hicks, 1946, “income no. 3”)
is associated with the stationary equivalent

Problems:

- Income does not equal net product,
even in a closed economy with stationary technology
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 1

Indicator of impoverishment:
Stationary equivalent of future consumption

Income (Hicks, 1946, “income no. 3”)
is associated with the stationary equivalent

Problems:
- Income does not equal net product, even in a closed economy with stationary technology
- Hard to define in the case of multiple consumption goods
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 2
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 2

Hicks (1946, p. 172): “It seems that we ought to define a man’s income as the maximum value which he can consume during a week, and still expect to be as well off at the end of the week as he was at the beginning.”
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 2

Hicks (1946, p. 172): “It seems that we ought to define a man’s income as the maximum value which he can consume during a week, and still expect to be as well off at the end of the week as he was at the beginning.”

Indicator of impoverishment: Dynamic welfare
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 2

Hicks (1946, p. 172): “It seems that we ought to define a man’s income as the maximum value which he can consume during a week, and still expect to be as well off at the end of the week as he was at the beginning.”

Indicator of impoverishment: Dynamic welfare

Measurement of change in dynamic welfare (Samuelson, 1961): PV of future changes in consumption
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 2

Hicks (1946, p. 172): “It seems that we ought to define a man’s income as the maximum value which he can consume during a week, and still expect to be as well off at the end of the week as he was at the beginning.”

Indicator of impoverishment: Dynamic welfare

Measurement of change in dynamic welfare (Samuelson, 1961):
PV of future changes in consumption = savings
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 2

Hicks (1946, p. 172): “It seems that we ought to define a man’s income as the maximum value which he can consume during a week, and still expect to be as well off at the end of the week as he was at the beginning.”

Indicator of impoverishment: Dynamic welfare

Measurement of change in dynamic welfare (Samuelson, 1961): PV of future changes in consumption = savings

Income = value of consumption + savings
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 2

Hicks (1946, p. 172): “It seems that we ought to define a man’s income as the maximum value which he can consume during a week, and still expect to be as well off at the end of the week as he was at the beginning.”

Indicator of impoverishment: Dynamic welfare

Measurement of change in dynamic welfare (Samuelson, 1961):
 PV of future changes in consumption = savings

Income = value of consumption + savings
 = value of consumpt. + PV of future changes in consumpt.
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 2

Hicks (1946, p. 172): “It seems that we ought to define a man’s income as the maximum value which he can consume during a week, and still expect to be as well off at the end of the week as he was at the beginning.”

Indicator of impoverishment: Dynamic welfare

Measurement of change in dynamic welfare (Samuelson, 1961):
PV of future changes in consumption = savings

Income = value of consumption + savings
= value of consumpt. + PV of future changes in consumpt.

Present & future consumpt. (changes) are valued in welfare terms

References
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 2

Hicks (1946, p. 172): “It seems that we ought to define a man’s income as the maximum value which he can consume during a week, and still expect to be as well off at the end of the week as he was at the beginning.”

Indicator of impoverishment: Dynamic welfare

Measurement of change in dynamic welfare (Samuelson, 1961):
PV of future changes in consumption = savings

Income = value of consumption + savings
= value of consumpt. + PV of future changes in consumpt.

Present & future consumpt. (changes) are valued in welfare terms
Income: “The amount which [one] can consume without impoverish [oneself]” (Hick, 1946), v. 2

Hicks (1946, p. 172): “It seems that we ought to define a man’s income as the maximum value which he can consume during a week, and still expect to be as well off at the end of the week as he was at the beginning.”

Indicator of impoverishment: Dynamic welfare

Measurement of change in dynamic welfare (Samuelson, 1961):
PV of future changes in consumption = savings

Income = value of consumption + savings
= value of consumpt. + PV of future changes in consumpt.

Present & future consumpt. (changes) are valued in welfare terms

In an optimum: Observable prices; otherwise: calculated prices
Definition of income (Sefton & Weale, 2006)
Definition of income (Sefton & Weale, 2006)

\[p_c(t)c(t) \]
Definition of income (Sefton & Weale, 2006)

\[
\frac{d}{dt} (p_c(t)c(t))
\]
Definition of income (Sefton & Weale, 2006)

\[
\frac{d}{dt}(p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t)
\]
Definition of income (Sefton & Weale, 2006)

\[
\frac{d}{dt}(p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t)
\]

\[
-p_c(t)c(t) = \int_t^\infty \dot{p}_c(\tau)c(\tau)d\tau + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau
\]
Definition of income (Sefton & Weale, 2006)

\[
\frac{d}{dt} (p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t)
\]

\[
-p_c(t)c(t) = \int_t^\infty \dot{p}_c(\tau)c(\tau)d\tau + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau
\]

\[
\underbrace{\int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau}_{\text{Savings}}
\]
Definition of income (Sefton & Weale, 2006)

\[
\frac{d}{dt}(p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t)
\]

\[
-p_c(t)c(t) = \int_t^\infty \dot{p}_c(\tau)c(\tau)d\tau + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau
\]

\[
p_c(t)c(t) + \underbrace{\int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau}_{\text{Savings}}
\]
Definition of income (Sefton & Weale, 2006)

\[\frac{d}{dt}(p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t) \]

\[-p_c(t)c(t) = \int_{t}^{\infty} \dot{p}_c(\tau)c(\tau)d\tau + \int_{t}^{\infty} p_c(\tau)\dot{c}(\tau)d\tau \]

\[\begin{align*}
&= p_c(t)c(t) + \int_{t}^{\infty} p_c(\tau)\dot{c}(\tau)d\tau \\
\text{Income} & \quad \text{Savings}
\end{align*} \]
Definition of income (Sefton & Weale, 2006)

\[
\frac{d}{dt}(p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t)
\]

\[
-p_c(t)c(t) = \int_t^\infty \dot{p}_c(\tau)c(\tau)d\tau + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau
\]

\[
\int_t^\infty (-\dot{p}_c(\tau))c(\tau)d\tau = p_c(t)c(t) + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau
\]

Income

Savings
Definition of income (Sefton & Weale, 2006)

\[
\frac{d}{dt}(p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t)
\]

\[-p_c(t)c(t) = \int_t^\infty \dot{p}_c(\tau)c(\tau)\,d\tau + \int_t^\infty p_c(\tau)\dot{c}(\tau)\,d\tau\]

\[
\int_t^\infty (-\dot{p}_c(\tau))c(\tau)\,d\tau = p_c(t)c(t) + \int_t^\infty p_c(\tau)\dot{c}(\tau)\,d\tau
\]

\[\underbrace{\int_t^\infty (-\dot{p}_c(\tau))c(\tau)\,d\tau}_{\text{Income}} = \underbrace{p_c(t)c(t) + \int_t^\infty p_c(\tau)\dot{c}(\tau)\,d\tau}_{\text{Savings}}\]

\[p_c(t)c(t)\]
Definition of income (Sefton & Weale, 2006)

\[
\frac{d}{dt}(p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t)
\]

\[
-p_c(t)c(t) = \int_t^\infty \dot{p}_c(\tau)c(\tau)d\tau + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau
\]

\[
\int_t^\infty \left(-\dot{p}_c(\tau)\right)c(\tau)d\tau = p_c(t)c(t) + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau
\]

\[
P_c(t)c(t) + \int_t^\infty \frac{\pi(\tau)}{\pi(t)}p_c(\tau)\dot{c}(\tau)d\tau
\]
Definition of income (Sefton & Weale, 2006)

\[
\frac{d}{dt}(p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t)
\]

\[
-p_c(t)c(t) = \int_t^\infty \dot{p}_c(\tau)c(\tau)d\tau + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau
\]

\[
\int_t^\infty (-\dot{p}_c(\tau))c(\tau)d\tau = p_c(t)c(t) + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau
\]

\[
\int_t^\infty \frac{\pi(\tau)}{\pi(t)}R(\tau)p_c(\tau)c(\tau)d\tau = P_c(t)c(t) + \int_t^\infty \frac{\pi(\tau)}{\pi(t)}p_c(\tau)\dot{c}(\tau)d\tau
\]
Definition of income (Sefton & Weale, 2006)

\[
\frac{d}{dt}(p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t)
\]

\[
-p_c(t)c(t) = \int_t^\infty \dot{p}_c(\tau)c(\tau) d\tau + \int_t^\infty p_c(\tau)\dot{c}(\tau) d\tau
\]

\[
\int_t^\infty (-\dot{p}_c(\tau))c(\tau) d\tau = p_c(t)c(t) + \int_t^\infty p_c(\tau)\dot{c}(\tau) d\tau
\]

\[
Y(t) = \int_t^\infty \frac{\pi(\tau)}{\pi(t)} R(\tau)P_c(\tau)c(\tau) d\tau = P_c(t)c(t) + \int_t^\infty \frac{\pi(\tau)}{\pi(t)} P_c(\tau)\dot{c}(\tau) d\tau
\]
Definition of income (Sefton & Weale, 2006)

- Real income: PV of future real interest on consumption

\[\frac{d}{dt}(p_c(t)c(t)) = \dot{p}_c(t)c(t) + p_c(t)\dot{c}(t) \]

\[-p_c(t)c(t) = \int_t^\infty \dot{p}_c(\tau)c(\tau)d\tau + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau \]

\[\int_t^\infty (-\dot{p}_c(\tau))c(\tau)d\tau = p_c(t)c(t) + \int_t^\infty p_c(\tau)\dot{c}(\tau)d\tau \]

\[Y(t) = \int_t^\infty \frac{\pi(\tau)}{\pi(t)}R(\tau)p_c(\tau)c(\tau)d\tau = P_c(t)c(t) + \int_t^\infty \frac{\pi(\tau)}{\pi(t)}p_c(\tau)\dot{c}(\tau)d\tau \]
Results (including Asheim & Weitzman, 2001)

If a Divisia CPI is used and the real interest rate is positive:

Change in the real value of consumption = real value of consumption changes

Real income grows if and only if savings are positive

In a closed economy with stationary technology:

Savings = value of net investments

Income = consumpt. + value of net investm. = net product

If a Divisia CPI is used and the real interest rate is positive in a closed economy with stationary technology:

Increase in real net product indicates welfare improvement
Results (including Asheim & Weitzman, 2001)

If a Divisia CPI is used
Results (including Asheim & Weitzman, 2001)

If a Divisia CPI is used

- Change in the real value of consumption
 \[\text{real value of consumption changes}\]
Results (including Asheim & Weitzman, 2001)

If a Divisia CPI is used and the real interest rate is positive:

- Change in the real value of consumption
 \[= \text{real value of consumption changes}\]
Results (including Asheim & Weitzman, 2001)

If a Divisia CPI is used and the real interest rate is positive:

- Change in the real value of consumption
 \[= \text{real value of consumption changes}\]
- Real income grows if and only if savings are positive
Results (including Asheim & Weitzman, 2001)

If a Divisia CPI is used and the real interest rate is positive:

- Change in the real value of consumption
 = real value of consumption changes
- Real income grows if and only if savings are positive

In a closed economy with stationary technology:
Results (including Asheim & Weitzman, 2001)

If a Divisia CPI is used and the real interest rate is positive:

- Change in the real value of consumption
 $= \text{real value of consumption changes}$
- Real income grows if and only if savings are positive

In a closed economy with stationary technology:

- Savings $= \text{value of net investments}$
Results (including Asheim & Weitzman, 2001)

If a Divisia CPI is used and the real interest rate is positive:

- Change in the real value of consumption
 = real value of consumption changes
- Real income grows if and only if savings are positive

In a closed economy with stationary technology:

- Savings = value of net investments
- Income = consumpt. + value of net investm. = net product
Results (including Asheim & Weitzman, 2001)

If a Divisia CPI is used and the real interest rate is positive:

- Change in the real value of consumption
 = real value of consumption changes
- Real income grows if and only if savings are positive

In a closed economy with stationary technology:

- Savings = value of net investments
- Income = consumpt. + value of net investm. = net product

If a Divisia CPI is used and the real interest rate is positive in a closed economy with stationary technology:
Results (including Asheim & Weitzman, 2001)

If a Divisia CPI is used and the real interest rate is positive:

- Change in the real value of consumption
 \[= \text{real value of consumption changes}\]
- Real income grows if and only if savings are positive

In a closed economy with stationary technology:

- Savings \(=\) value of net investments
- Income \(=\) consumpt. + value of net investm. \(=\) net product

If a Divisia CPI is used and the real interest rate is positive in a closed economy with stationary technology:

- Increase in real net product indicates welfare improvement
Purpose: Indicating prudent behavior

Purpose: Indicating prudent behavior

by:

- savings non-negative
- consumption not exceeding income
- real income non-decreasing

For local-in-time comparisons within an economy:

- Does dynamic welfare increase?

Not for global-in-space comparisons between economies:

- Are people in one economy better off than in another?
Purpose: Indicating prudent behavior

by:
Purpose: Indicating prudent behavior by:

- savings non-negative
Purpose: Indicating prudent behavior

by:

- savings non-negative
- consumption not exceeding income
Purpose: Indicating prudent behavior

by:

- savings non-negative
- consumption not exceeding income
- real income non-decreasing
Purpose: Indicating prudent behavior

by:

- savings non-negative
- consumption not exceeding income
- real income non-decreasing

For local-in-time comparisons within an economy: Does dynamic welfare increase?
Purpose: Indicating prudent behavior

by:

- savings non-negative
- consumption not exceeding income
- real income non-decreasing

For local-in-time comparisons within an economy:
Does dynamic welfare increase?

Not for global-in-space comparisons between economies:
Are people in one economy better off than in another?
Role of consumers’ surplus

For local-in-time comparisons within an economy:

No role! Only the value of consumption changes matters

For global-in-time comparisons within an economy:

Is dynamic welfare higher now than it was periods ago?

This leads to the problem of path dependence

Global-in-time comparisons using a Divisia CPI hold if preferences are quasi-homothetic that is, if Engel curves are linear

If some goods are environmental amenities, then linear Engel curves impose requirements on the scale used to measure such amenities

For a different scale, consumers’ surplus might have a role
Role of consumers’ surplus

For local-in-time comparisons within an economy:
Role of consumers’ surplus

For local-in-time comparisons within an economy:
No role! Only the value of consumption changes matters
Role of consumers’ surplus

For local-in-time comparisons within an economy:
No role! Only the value of consumption changes matters

For global-in-time comparisons within an economy:
Is dynamic welfare higher now than it was \(n \) periods ago?
Role of consumers’ surplus

For local-in-time comparisons within an economy:
No role! Only the value of consumption changes matters

For global-in-time comparisons within an economy:
Is dynamic welfare higher now than it was n periods ago?
This leads to the problem of path dependence
Role of consumers’ surplus

For local-in-time comparisons within an economy:
No role! Only the value of consumption changes matters

For global-in-time comparisons within an economy:
Is dynamic welfare higher now than it was \(n \) periods ago?
This leads to the problem of path dependence

Global-in-time comparisons using a Divisia CPI
hold if preferences are quasi-homothetic
Role of consumers’ surplus

For local-in-time comparisons within an economy:
No role! Only the value of consumption changes matters

For global-in-time comparisons within an economy:
Is dynamic welfare higher now than it was \(n \) periods ago?
This leads to the problem of path dependence

Global-in-time comparisons using a Divisia CPI
hold if preferences are quasi-homothetic
that is, if Engel curves are linear
Role of consumers’ surplus

For local-in-time comparisons within an economy:
No role! Only the value of consumption changes matters

For global-in-time comparisons within an economy:
Is dynamic welfare higher now than it was n periods ago?
This leads to the problem of path dependence

Global-in-time comparisons using a Divisia CPI
hold if preferences are quasi-homothetic
that is, if Engel curves are linear

If some goods are environmental amenities,
then linear Engel curves impose requirements on
the scale used to measure such amenities
Role of consumers’ surplus

For local-in-time comparisons within an economy:
No role! Only the value of consumption changes matters

For global-in-time comparisons within an economy:
Is dynamic welfare higher now than it was \(n \) periods ago?
This leads to the problem of path dependence

Global-in-time comparisons using a Divisia CPI
hold if preferences are quasi-homothetic
that is, if Engel curves are linear

If some goods are environmental amenities,
then linear Engel curves impose requirements on
the scale used to measure such amenities
For a different scale, consumers’ surplus might have a role
References

