

System of Environmental Economic Accounting

Supply of ecosystem services

(Level 1 and Level 2)

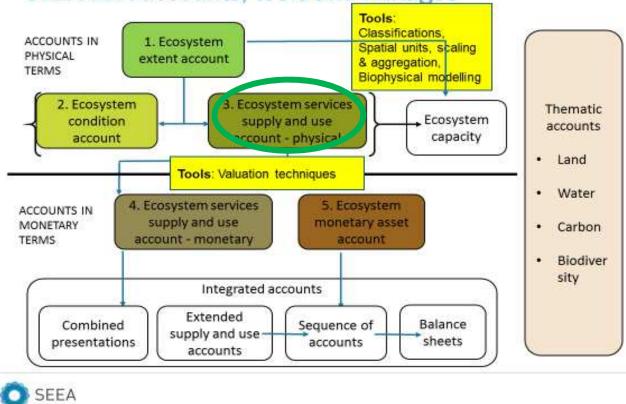
October 2017

Overview: Services Supply

- 1. Learning objectives
 - 1. Review of Level 0 (5m)
- 2. Level 1 (Compilers)
 - 1. Concepts (15m)
 - 2. Group exercise & Discussion (30m)
- 3. Level 2 (Data providers)
 - Data options, examples & issues (15m)
 - Group exercise & Discussion (15m)
- 4. Closing Discussion (10m)

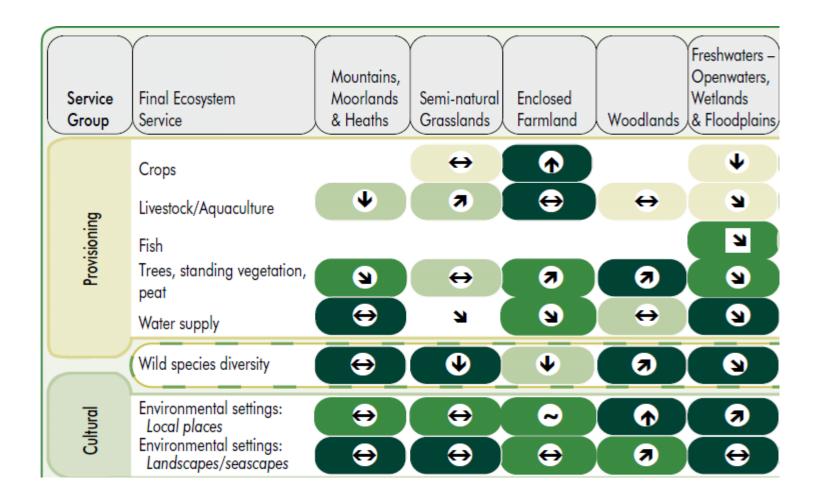
© wiktor bubniak / Fotolia.com

SEEA-EEA Training Levels 1 and 2


- Learning objectives
 - > Level 1: To understand:
 - Why accounting for Ecosystem Services is important
 - The basics of the "ecosystem services cascade" and the difference between its components
 - How Services Supply is treated in the SEEA, including basic concepts and the structure of the accounts that include services
 - How to start to compile a Services Supply account
 - > Level 2:
 - ⁻ Understand the data options and sources
 - Be aware of how other countries have approached Ecosystem Services Supply

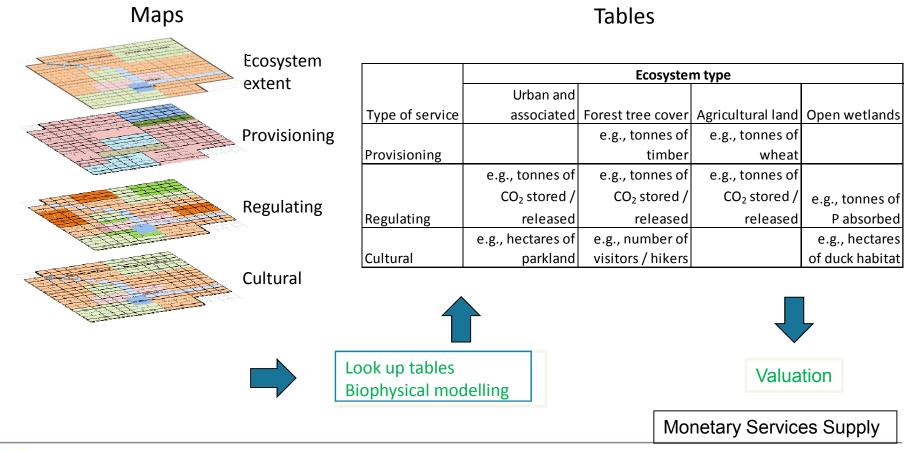
Review of Level 0: Services Supply Account

Services Supply




SEEA-EEA accounts, tools and linkages

- What?
 - Physical flows of "final" ecosystem **services** from ecosystems to beneficiaries
 - Directly used by (or affect) people
- Why?
 - Inform policies of contribution of ecosystems to human well-being
 - Assess trade-offs between development and conservation
 - Link to standard economic production measures in SNA
 - Link to other SEEA-EEA accounts (**Condition**, **Services Use**, **Monetary Ecosystem Services; Ecosystem Monetary Asset** valuation)
 - Indicators:
 - Flows of individual services (physical and monetary) → change
 - Indices of aggregated services by ecosystem type → change



What does an Ecosystem Service Supply Account look like?

• Example (Services Supply in physical units)

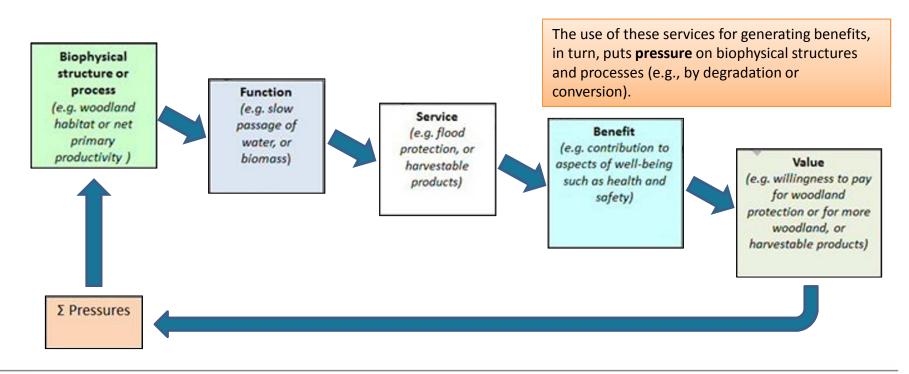
			Land cover type								
					_				Surface		Provincia
ECOSY	stem service	Units	Urban	Pasture	Cropland	Forest	Heath	Peat	Water	nature	tota
	Hunting	kg meat	-	9,100	14,732	8,100	678	70		1,513	34,193
	Drinking water extraction	10 ³ m ³ water	4,071	7,026	11,227	3,117	214	-	478	862	26,995
Provisioning	Crop production	10 ⁶ kg produce	-	-	1,868	-	-	-	-	-	1,868
	Fodder production	10 ⁶ kg dry matter		533	251						784
	Air quality regulation	10 ³ kg PM ₁₀	272	404	717	700	45	7	40	69	2,254
_	Carbon sequestration	10 ⁶ kg carbon	875	8,019	273	50,664	393	149	•	1,056	61,42
Cultural	Recreational cycling	10 ³ trips	2,690	1,863	2,611	1,565	30	ŝ	139	220	9,12:

Source: Remme et al., 2014 (Limburg, the Netherlands)

- What does a Services Supply Account look like?
 - Spatially-detailed physical measures of "final" services according to a common **Classification**:
 - Provisioning
 - Regulating
 - Cultural
 - Physical measures (crops, flood control, clean drinking water, carbon sequestration, recreation, ...)
 - Services supply account in physical terms forms the basis for **Valuation** where appropriate and available
 - → Monetary Services Supply

- What do you need to create a Services Supply Account?
 - Ecosystem Extent
 - Common spatial infrastructure (Spatial Units)
 - Common Classification of services
 - Data:
 - Field studies
 - Economic production (agriculture, forestry, fisheries, water)
 - **Biophysical modelling** of individual ecosystem services
 - Expertise: ecologists, geographers (GIS), economists, policy analysts, statisticians

Level 1: Services Supply Account

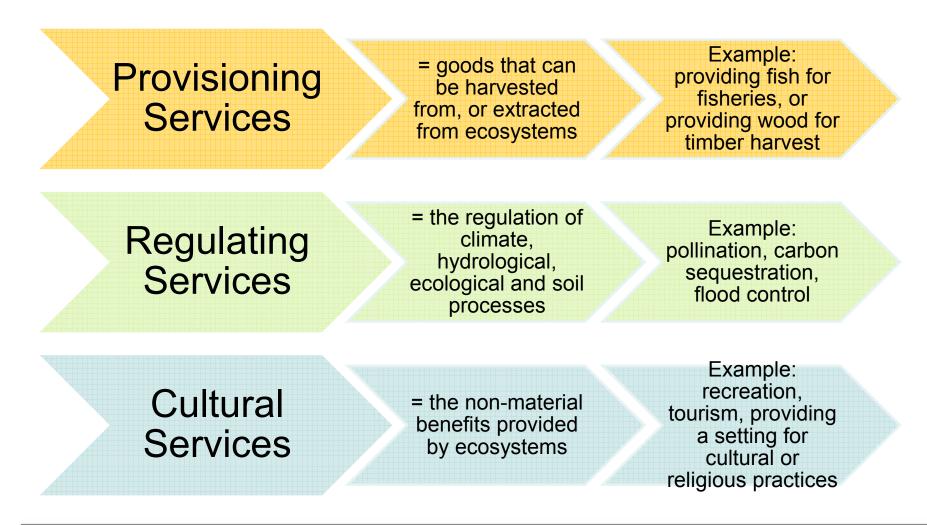


- Why Services Supply Accounts?
 - > Ecosystems provide services that are essential to the economy and human activities:
 - Food supply
 - Clean water
 - Flood protection
 - Carbon sequestration
 - Recreation, cultural and religious importance
 - > Ecosystems are being converted and degraded
 - Which ones are most important to conserve?
 - How can they best be managed to maintain services?
 - Link with national planning and accounting to ensure ecosystems are mainstreamed in decisions


The Ecosystem Services Cascade

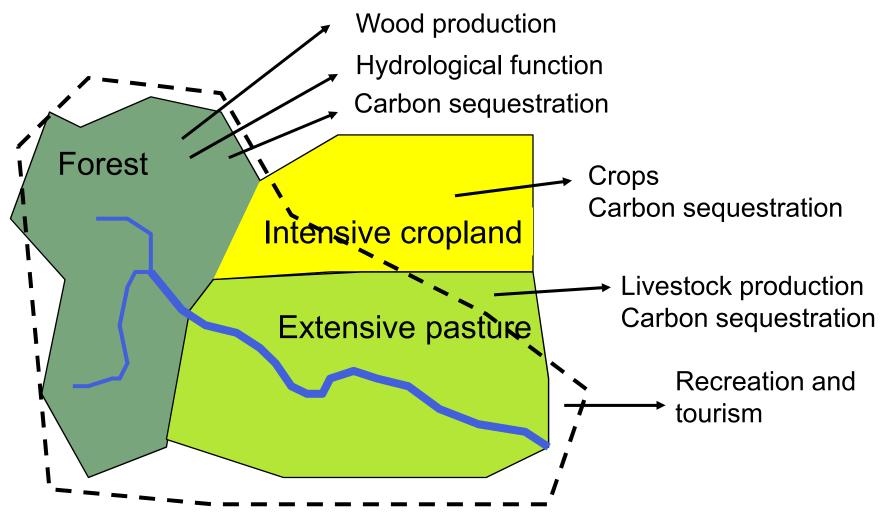
Ecosystem services are the contribution of ecosystems to benefits for people...

Source: Nottingham School of Geography Page 14


- Ecosystem services are the contribution of ecosystem to benefits for people...
 - > They are not the benefits; benefits require capital and labour to use
 - > We need to calculate the contribution of ecosystems, for example:

Crops = f(nature, equipment, inputs, labour, energy...)

- > To grow crops, nature provides biomass growth, nutrients, water, flood control, pollination...
- > Without these, there would be no crops.
- > In the Services Supply Account, we measure the physical services (e.g., the addition to biomass of the crop).



Types of Ecosystem Services

Ecosystem services and maps

- The SEEA-EEA focuses on "final" services
 - > The point before human involvement transforms the services to benefits
 - biomass \rightarrow harvesting
 - fish → capture
 - > Ecosystem processes and functions are **not** final services
 - e.g., reproduction, predation, food web, nutrient cycle...
 - > **Biodiversity** itself is not a "final" service
 - It is an aspect of Ecosystem Condition and is recorded in the Biodiversity Account.

Services

- Based on Common International Classification of Ecosystem Services (<u>CICES</u>)
- Not mutually exclusive
- A list of "final" services
- Detailed (4-digit)
- Does not include
 "supporting" or
 "intermediate" services (=
 ecosystem functions)

		-				
Section	Division	Group				
	01.01 Nutrition	01.01.01 Biomass				
		01.01.02 Water				
01. Provisioning	01 02 Materials	01.02.01 Biomass				
or. The visioning		01.02.02 Water				
	01.03 Energy	01.03.01 Biomass-based energy sources				
	OT.05 Ellergy	01.03.02 Mechanical energy				
	02.01 Mediation of waste,	02.01.01 Mediation by biota				
	toxics and other nuisances	02.01.02 Mediation by ecosystems				
		02.02.01 Mass flows				
	02.02 Mediation of flows	02.02.02 Liquid flows				
		02.02.03 Gaseous / air flows				
02. Regulation &		02.03.01 Lifecycle maintenance, habitat and gene pool				
Maintenance		protection				
	02.03 Maintenance of	02.03.02 Pest and disease control				
	physical, chemical,	02.03.03 Soil formation and composition				
	biological conditions	02.03.04 Water conditions				
		02.03.05 Atmospheric composition and climate				
		regulation				
	03.01 Physical and intellectual interactions	03.01.01 Physical and experiential interactions				
03. Cultural	[environmental settings]	03.01.02 Intellectual and representative interactions				
03. Cultural		03.02.01 Spiritual and/or emblematic				
	biota, ecosystems, and land- /seascapes [environmental settings]	03.02.02 Other cultural outputs				

- How?
 - > Direct measure (e.g., socio-economic survey on recreational use, field survey of available fish...)
 - > **Remember** Level 0 Biophysical modelling?
 - **Lookup tables:** Take values from another location
 - Statistical approaches: Estimate based on known explanatory variables
 - **Geostatistical interpolation:** Estimate from nearby known locations
 - Process-based modelling: Use models of processes
 (e.g., land cover change, demand for services...)
 - > The group exercise will use only **Lookup Tables...**

- Compilation Group Exercise (30m)
 - Situation:
 - **Know** total services supply for some EAs
 - Need to calculate:
 - Missing services supply for missing EAs based on known data and lookup table
 - Objective (Groups of 3-5):
 - 1. Calculate missing services
 - 2. Calculate totals
 - 3. Report and discuss results

Group Exercise: Step 1 – Calculate unknown services

e.g., Crop for EU04 = (18,700 / 500) * 281.3			g., Carb 500 * 20)		EU04 =	:
Services Supply Database						
		(C)	(R)	(W)	(S) Ca	rbon
		Crop	Recreation	Water	Sequest	ration
	Extent				tonnes	tonnes
EU	(ha)	tonnes/year	trips/year	m³/year	/ha/year	/year
EA01 = Herbaceous crops	500.0	18,700.0	500.0	600.0	20	
EA02 = Tree covered areas	262.5	0.0	1,500.0	500.0	30	
EA03 = Inland water bodies	68.8	0.0	1,600.0	15,000.0	5	
EA04 = Herbaceous crops	281.3				20	
EA05 = Tree covered areas	75.0				30	
EA06 = Artificial surfaces (urban)	56.3	0.0	500.0	500.0	0	
EA07 = Artificial surfaces (urban)	68.8	0.0	700.0	400.0	0	
EA08 = Shrubsregularly flooded (wetland)	37.5	700.0	5,000.0	10,000.0	40	
EA09 = Inland water bodies	50.0				5	
EA10 = Tree covered areas	225.0				30	
EA11 = Herbaceous crops	175.0				20	
Total	1,800.0					0

- Is everyone clear on the objectives?
- 30 minutes group work
- Please ask questions!
- Results:
- Each group report:
 - > Totals for each service
 - > Which EU generates
 - > the most of each service?
- Were there any surprises?

Services Supply Database						
		(C)	(R)	(W)	(S) Car	bon
		Crop	Recreation	Water	Sequest	ration
	Extent				tonnes	tonnes
EU	(ha)	tonnes/year	trips/year	m³/year	/ha/year	/year
EA01 = Herbaceous crops	500.0	18,700.0	500.0	600.0	20	
EA02 = Tree covered areas	262.5	0.0	1,500.0	500.0	30	
EA03 = Inland water bodies	68.8	0.0	1,600.0	15,000.0	5	
EA04 = Herbaceous crops	281.3				20	
EA05 = Tree covered areas	75.0				30	
EA06 = Artificial surfaces (urban)	56.3	0.0	500.0	500.0	0	
EA07 = Artificial surfaces (urban)	68.8	0.0	700.0	400.0	0	
EA08 = Shrubsregularly flooded (wetland)	37.5	700.0	5,000.0	10,000.0	40	
EA09 = Inland water bodies	50.0				5	
EA10 = Tree covered areas	225.0				30	
EA11 = Herbaceous crops	175.0	ADM ADM ADM ADM ADM ADM ADM ADM	000 000 000 000 000 000 000 000	2011 0011 0001 0011 0011 0011 0011	20	
Total	1,800.0					

The answers:

EA01 generates the most services for Crop and Carbon Sequestration. EA03 generates the most services for Water

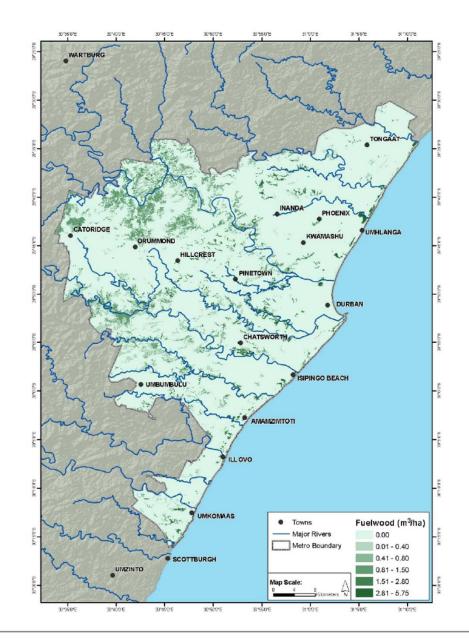
EA08 generates the most services for Recreation

		(C)	(R)	(W)	(S) Car	bon
		Crop	Recreation	Water	Sequest	ration
	Extent				tonnes	tonnes
EU	(ha)	tonnes/year	trips/year	m ³ /year	/ha/year	/year
EA01 = Herbaceous crops	500.0	18,700.0	500.0	600.0	20	10,000
EA02 = Tree covered areas	262.5	0.0	1,500.0	500.0	30	7,875
EA03 = Inland water bodies	68.8	0.0	1,600.0	15,000.0	5	<mark>344</mark>
EA04 = Herbaceous crops	281.3	10,518.8	281.3	337.5	20	<u>5,625</u>
EA05 = Tree covered areas	75.0	0.0	428.6	142.9	30	<mark>2,250</mark>
EA06 = Artificial surfaces (urban)	56.3	0.0	500.0	500.0	0	0
EA07 = Artificial surfaces (urban)	68.8	0.0	700.0	400.0	0	0
EA08 = Shrubsregularly flooded (wetland)	37.5	700.0	5,000.0	10,000.0	40	1,500
EA09 = Inland water bodies	50.0	0.0	1,163.6	10,909.1	5	<mark>250</mark>
EA10 = Tree covered areas	225.0	0.0	1,285.7	428.6	30	6,750
EA11 = Herbaceous crops	175.0	6,545.0	175.0	210.0	20	3,500
Total	1,800.0	36,463.8	13,134.2	39,028.0		<mark>38,094</mark>

Services Supply Database

Level 2: Services Supply Account

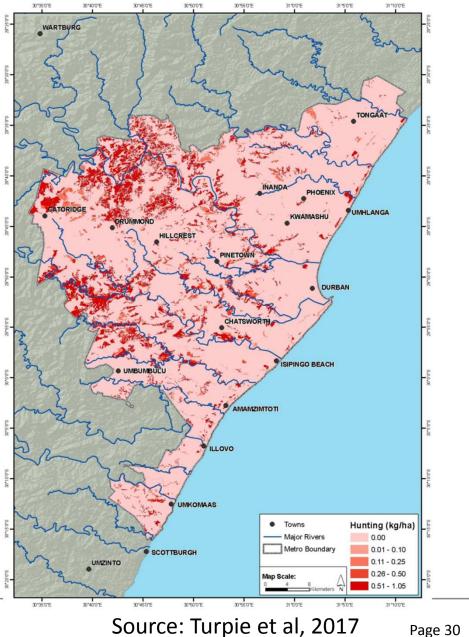
- Learning objectives (Level 2)
 - > Understand the data options and sources
 - > Be aware of how other countries have approached Services Supply Accounting



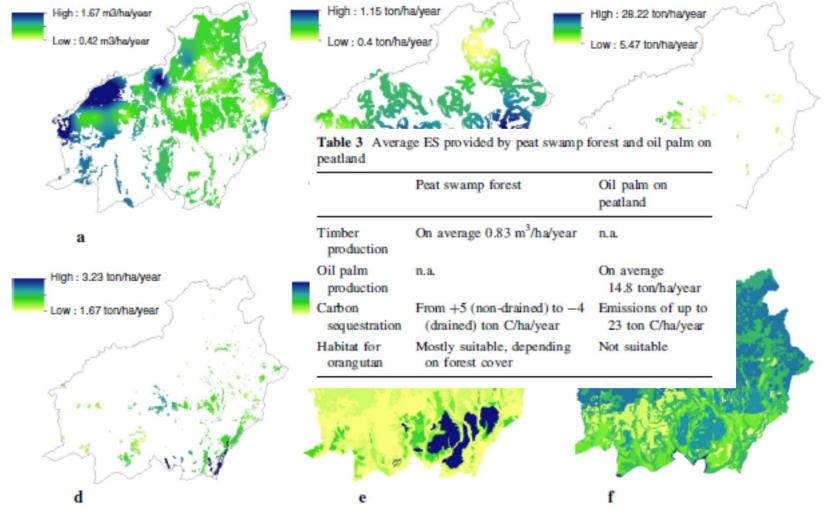
- A full Services Supply Account is more complex than the exercise:
 - > More services (48 "final" services in CICES)
 - > More types of data (tonnes, risks, visitors, air quality, cultural significance...)
 - > Less measured data \rightarrow need models to estimate
 - > High variability among ecosystem types and region (e.g., salt marsh carbon = 650 to 1750 tCO₂/ha/year)
- **Do not** need to include all services:
 - > High priority services \rightarrow measure or estimate
 - > Get started with available data

Example - SA

- Example from South Africa: Durban area
- Map shows annual sustainable fuelwood output (m3/ha) from different habitats
- In the absence of local data, cubic volume of wood for estimated using the following simplified equation
- Volume (m^3/ha) = basal area (m^2/ha)×canopy height (m)/3
- A sustainable yield of 3% of standing crop applied for all vegetation classes


Source: Turpie et al, 2017

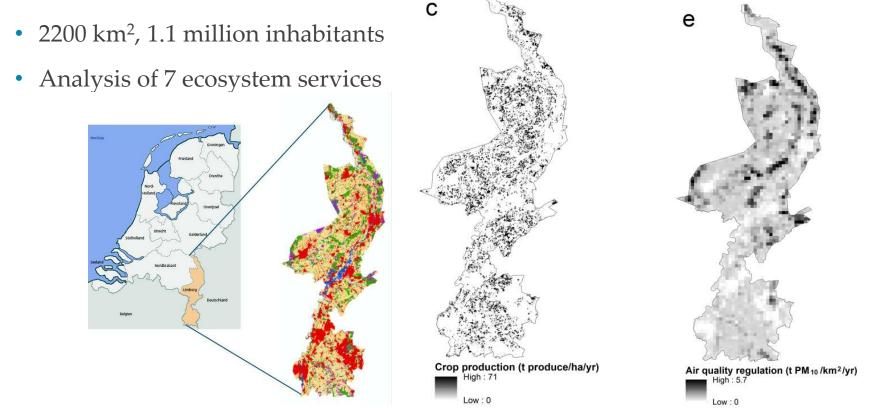
Example - SA


- Example from South Africa, Durban area
- Estimated annual sustainable hunting ٠ output (kg/ha) across the EMA
- Based on various studies, •
- In total: 26 000 kg of wild meat and birds with a total estimated value of R565 500
- Forest, thicket and woodland habitats are estimated to be able to supply the majority of this output.
- Based on sustainable offtake levels, do • not consider illegal hunting
- Highest levels of output associated with habitats in outer-west and southern regions where natural habitat patches are larger, less fragmented and on communal land

SEEA

Page 30

Example – Indonesia (Kalimantan)



Source: Sumarga and Hein, 2014

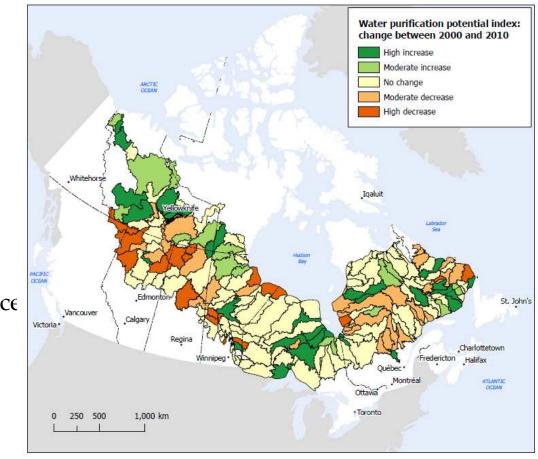
Ecosystem services in an account

• Ecosystem service account developed for Limburg Province, the Netherlands

Source: Remme et al., 2014 (Limburg, the Netherlands) Page 32

• Example (services in physical units)

			Land cover type								
Ecosy	/stem service	Units	Urban	Pasture	Cropland	Forest	Heath	Peat	Surface Water	Other nature	Provincial total
	Hunting	kg meat	-	9,100	14,732	8,100	678	70		1,513	34,193
	Drinking water extraction	10 ^s m ^s water	4,071	7,026	11,227	3,11/	214	-	478	862	26,995
Provisioning	Crop production	10 ⁶ kg produce	-	-	1,868	-	-	-	-	-	1,868
	Fodder production	10 ⁶ kg dry matter		533	251						784
	Air quality regulation	10 ³ kg PM ₁₀	272	404	717	700	45	7	40	69	2,254
Kegulation	Carbon sequestration	10 ⁶ kg carbon	875	8 <mark>,</mark> 019	273	50,664	393	149	-	1,056	<mark>61,429</mark>
Cultural	Recreational cycling	10° trips	2,690	1,863	2,611	1,565	30	3	139	220	<mark>9,121</mark>
		Note: Ur	nits c	of mea	asure	are v	ery	diff	erent		



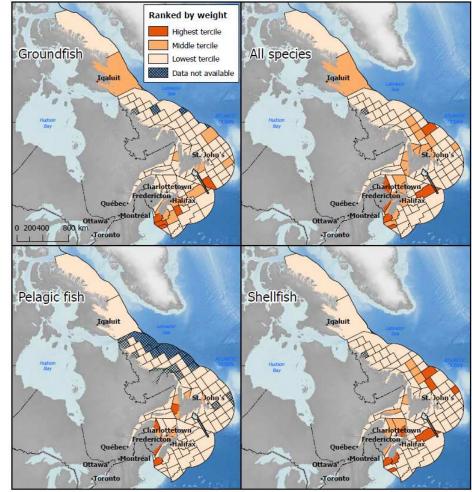
- Data options and sources
 - Field studies
 - Literature on similar sites or specific research
 - Economic production (agriculture, forestry, fisheries, water)
 - Socio-economic statistics already available with spatial detail
 - Biophysical modelling
 - Know conditions, can estimate some services using production functions (e.g., hydrology → flood control)

Canada Example

Water purification potential change by drainage area for boreal wetlands Index based on: % forest cover % agricultural land % riparian forest % wetlands % anthropogenic disturbance % burn area Edge & linear density (fragmentation) Human footprint Slope Nitrogen & Sulphur exceedance (from atmospheric deposition)

Source: Statistics Canada, 2013

Canada example


Weight of commercial fish landings by marine statistical area

Includes:

- Groundfish
- Pelagic fish
- Shellfish

Also done for west coast

Statistical area defined by Ministry of Fisheries and Oceans

Level 2: Account 3: Services Supply^{3ge 36}

• Some services flow data are available

Service	Flow measure						
Provisioning services							
Timber services	timber increment						
Crops	crop production						
Livestock	livestock production						
Water provision	annual freshwater supply						
Regulating services							
Water quantity regulation	total amount of water stored						
water quantity regulation	total amounts of pollutants removed annually						
Climate regulation	annual carbon fixation						
Storm protection	total number of storms mitigated						
Air quality regulation	total amount of pollutants removed via dry deposition on leaves						
Erosion control	total amount of soil retained						
Pollination	increased yield of crops due to pollination						
Soil quality regulation	increased yield of crops attributable to soil quality						
Cultural services							
Recreation	number of visitors						
Source: (Maes, Paracchini et al. 2	011)						

- **Data sources:** Socio-economic statistics
 - > Agricultural statistics: crop, livestock production
 - > Energy statistics: biomass for fuel
 - > Fisheries statistics: catch, stock
 - > Forestry statistics: timber stock, harvest
 - > Park surveys: visitors, use
 - > Water statistics: withdrawals, consumption
 - > Natural disasters: incidence of floods, erosion, storms
 - > Soil inventories: erosion potential
 - > Health statistics: regulation of biotic environment
- Best if they are national and good quality

- **Data sources:** Environmental statistics
 - > Iconic species ranges & habitats
 - > Land cover \rightarrow carbon sequestration, air filtration
 - > Hydrology & weather data: Flow rates, variability → flood risk
 - > Topography, land cover, soil & weather data → erosion and landslide risk
 - > Carbon storage and sequestration (see Carbon Accounts)
 - > Remote sensing \rightarrow primary production
- Best if they are national and good quality

- Data sources: Specific studies & models
 - > These may not be included in valuation databases
 - > Specific studies:
 - National or regional ecosystem assessments (Millennium Ecosystem Assessment, UK National Ecosystem Assessment)
 - Small-area studies (e.g., one park, one region)
 - TEEB studies and country studies (multiple ecosystems and services)
 - > Decision-support models:
 - There are landscape-scale and site-scale models that can help estimate service flows (AIRES, InVEST, LUCI...)
 - See Biophysical Modelling

- Data sources: Special surveys and case studies
 - > High-priority data gaps may also be addressed by collecting new data
 - Ecological field studies to determine "production functions"
 - Socio-economic surveys to determine use of services (e.g., water, food, recreation)
 - Case-studies for specific locations or social groups (e.g., dependence on nature of low-income residents)
 - > If possible, add questions to existing surveys, for example,
 - Households use of water, source of food, incidence of hazards (flooding, erosion, drought, disease), source of biomass for fuel

Group exercise (15m)

(Groups of 3-5)

- 1. In your country (or region), what are **three** important **ecosystem services** that should be included in a Services Supply Account?
- 2. Which ecosystem types supply them?
- 3. What **national data** are available in your country on the supply of these services?
- 4. Report your results

- Concepts Group exercise (15m)
- Group reports
 - > The **ecosystem services** you selected
 - > The main land cover types for each
 - > Are **national data** available in your country on the supply of these services?
- Discussion
 - > What other ecosystem services would be important to measure?
 - > On what topic might a special survey be used to fill priority data gaps?

- Discussion and questions
- Take home points
 - > Services Supply in biophysical terms is one of the most important aspects of ecosystem accounting
 - > Data on Services Supply are available from many sources
 - > There are some simple methods and models available to integrate these data and fill gaps
 - > Start by focussing on available data and priority services

References

- CICES, 2013. <u>www.cices.eu</u>
- European Commission, Organisation for Economic Co-operation and Development, United Nations and World Bank 2013, SEEA Experimental Ecosystem Accounting, <u>http://unstats.un.org/unsd/envaccounting/seeaRev/eea_final_en.pdf</u>
- Maes, J., Paracchini, M.L. and Zulian, G., 2011. *A European assessment of the provision of ecosystem services: Towards an atlas of ecosystem services*. Luxembourg: European Commission Joint Research Centre-Institute for Environment and Sustainability.
- Malouin, C., Doyle, M. and Liss, K., 2013. Toward an Ecosystem Potential Index for Canada (EPIC): A Boreal Case Study. ResearchGate.net.
- Nottingham School of Geography, nd, Nature's services in decision making. <u>http://nottingham.ac.uk/geography/research/impact/natures-services.aspx</u>
- Remme, Roy P., Matthias Schröter, and Lars Hein. Developing spatial biophysical accounting for multiple ecosystem services. *Ecosystem Services* 10 (2014): 6-18.
- Statistics Canada, 2013. *Human Activity and the Environment: Measuring Ecosystem Goods and Services 2013*. 16-201-XWE. Ottawa: Government of Canada.

- Further Information
 - > <u>SEEA Experimental Ecosystem Accounting</u> (2012)
 - > SEEA-EEA Technical Guidance
 - Detailed supporting documents
 - "Linkages between ecosystem service accounts and ecosystems asset accounts" and
 - "Biophysical Modelling and Analysis of Ecosystem
 Services in an Ecosystem Accounting Context" by Lars
 Hein

Acknowledgements

These materials have been developed in partnership with various organizations including the United Nations Statistics Division, UN Environment, the Convention on Biological Diversity, supported by the Norwegian Ministry of Foreign Affairs, and the European Union.

