

System of Environmental Economic Accounting

Valuation – country experiences

(Level 2)

Level 2: Country examples

International experiences

Valuation experiences

- Netherlands water resources
- Netherlands ecosystem services
- EU ES provided by lakes
- Canada
- South Africa
- China
- TEEB
- United Kingdom

- Objective: investigate methods to value water resources consistent with national accounts principles
- Using the measurement boundary of the System of Environmental Economic Accounting(SEEA) Central Framework
- Restrict to extractive use / provisioning services of various types of water resources
- Approximately 26 billion euros, or 10 % of value of natural capital currently in Dutch balance sheet

Contents lists available at ScienceDirect Water Resources and Economics Journal homepage: www.elsevier.com/locate/wre

Water Resources and Economics 7 (2014) 66-81

Experimental valuation of Dutch water resources OcrossMark according to SNA and SEEA

Bram Edens *, Cor Graveland National Accounts Department, Statistics Netherlands, The Hague, Netherlands

Table 1

Abstraction of water by Dutch economy, 2010. Source: [14–16] with minor adjustments.

Water	Unit	Economic activity												
resource		Agriculture, forestry and fishing	Mining and quarrying	Manufacturing	Electricity and gas supply	Watersupply and waste management	Other	Total water use						
Ground	mln m ³	96	0	142	5	763		1006						
Cooling	mln m ³		0	65	0			65						
Other use	mln m ³	96	0	77	5	763		941						
Surface	mln m ³	26	1	3350	9693	1006		14,076						
Fresh	mln m ³	26	1	804	-	1006		1837						
Fresh – cooling	mln m ³	*		2273	5699			7972						
Salt and brackish	mln m ³		•	273	3994		•	4267						
Soil water	mln m ³	7076	-	-	-	-	•	7076						
Total	mln m ³	7198	1	3492	9699	1769		22,159						

RR problematic due to market condition

Replacement costs techniques:

n • Valuation of provisioning service of groundwater: using additional cleaning costs when using surface water

0.6

0.5

0.4

0.3

0.2

0.1

- Assuming that surface water is indeed available under comparable conditions for abstraction and transport and not subject to depletion
- The least cost alternative for using surface water for making drinking water would be to use desalination.

for various water sources, 2010.

• Etc.

Source: PBL, RIVM, WUR, CICES 2014

- Limburg province:
- Biophysical model for 7 ecosystem services
- Spatially explicit!
- (although resolution differs)

Ecosystem services supply and use table

ECOSYSTEM SERVICES SUPPLY TABLE

			Тур	e of e	econo	mic u	nit							Туре	of Ec	osys	tem U	nit						
	UNITS	Agriculture, forestry and fisheries	Electricity, gas supply	Water collection, treatment and supply	Other industries	Households	Accumulation	Rest of the world - Imports	- Artificial surfaces	Herbaceous crops	Woody crops	Multiple or layered crops	ہ Grassland	Tree-covered areas	 Mangroves 	» Shrub-covered areas	Regularly flooded areas	Sparse natural vegetated areas	Terrestrial barren land	Permanent snow and glaciers	linland water bodies	Coastal water and inter-tidal areas	م Sea and marine areas	TOTAL SUPPLY
Ecosystem services									-	~	5	4	5	0	,	0	5	10	11	12	15	14	15	
Provisioning services																								
Regulating services					A					В														
Cultural services																								
Products					С											D								

ECOSYSTEM SERVICES USE TABLE

			Тур	e of e	econo	mic u	nit							Туре	of Ec	osys	tem U	nit						
	UNITS	Agriculture, forestry and fisheries	Electricity, gas supply	Water collection, treatment and supply	Other industries	Households	Accumulation	Rest of the world - Exports	Artificial surfaces	Herbaceous crops	Woody crops	Multiple or layered crops	Grassland	Tree-covered areas	Mangroves	Shrub-covered areas	Regularly flooded areas	Sparse natural vegetated areas	Terrestrial barren land	Permanent snow and glaciers	Inland water bodies	Coastal water and inter-tidal areas	Sea and marine areas	TOTAL USE
									1	2	3	4	5	6	. 7	. 8	.9	10	11	12	13	14	15	
Ecosystem services Provisioning services Regulating services Cultural services					E											F								
Products			G PA																					

Ecosystem monetary supply table

• Values per ha (per ET)

		Non-perennial plants	Meadows (for erazine)	Hedgerows	Deridinous forest	Coniferous forest	Mixed forest	Heath and	Fresh wrater wetlands	Natural grassfand	buildir graan shace	other unpaved terrain	River flood basin	Totals
extent	ha	53.629	27.066	2.940	11.414	7.091	10.437	2.149	936	3.121	4.761	22.591	14.126	220.922
Crops	€	35.303.100	-	-	-	-	-	-	-	-	-	-	-	37.908.400
Fodder	€	1.960.900	4.587.100	-	-	-	-	-	-	-	-	-	942.300	7.556.200
Meat (from game)	€	817.700	223.400	-	186.800	192.700	261.100	35.600	12.700	32.900	14.700	211.200	136.000	2.249.400
Ground water	€	3.861.200	1.802.300	193.900	824.200	63.500	218.700	57.300	11.200	295.700	192.600	1.041.100	545.700	11.602.800
Capture of PM10	€	301.200	173.700	30.400	200.200	185.700	200.700	27.200	2.400	46.700	78.100	258.200	85.900	2.275.900
Carbon sequestration	€	300	165.700	18.000	562.500	350.300	515.000	13.200	6.400	19.300	40.500	139.000	95.600	2.006.100
Nature tourism Recreation (cycling)	€ €	4.410.000 NA	6.349.100	2.357.700	6.930.100	3.162.500	5.443.100	917.000	392.800	2.488.900	625.900	2.870.600	3.162.100	41.816.200 NA
	€	46.654.400	13.301.400	2.600.000	8.703.800	3.954.700	6.638.800	1.050.400	425.400	2.883.500	951.700	4.520.200	4.967.500	105.415.000
value per ha (excl. Amenity)	€/ha	870	491	884	763	558	636	489	454	924	200	200	352	477
value per ha (incl. Amenity)*	€/ha	870	491	884	1.193	988	1.066	489	454	924	688	220	352	553

EU - value of ES by lakes

Assessment of the economic value of ecosystem services provided by lakes at European scale

- Meta-analytic spatially explicit benefit transfer (value function transfer)
- Based on new meta-database consisting of 107 observations for 35 distinct lakes in 12 countries delivering 8 different ES
- Value function transfer distinguishes between:
 - > value of the biophysical potential to generate ecosystem services,
 - > value the effective delivery of ES to local populations
- Spatially explicit combining a wide range of data sets (elevation; temperature; precipitation; population; areas; ecological status; lake density; GDP by NUTS3 region; area visible from lake)

EU - Lakes

- Individual data per lake in the policy sample - each lake is represented by a dot.
- The total number of lake in the policy sample is 12,590 (about 65 % of total lake surface area in EU)

- High values in densely populated areas
- Low values

 also
 influenced by
 colder
 temperatures,
 and
 availability of
 substitute
 lakes

EU lakes

- Results:
 - > European-wide estimate equal to 36.8 billion EUR per year.
 - > Scenario analysis -> improvement of the ecological conditions of all European lakes (5 category scale) from bad/poor to moderate status -> aggregated benefit of 5.9 billion EUR per year
 - significantly higher than the cost of lake restoration reported in the literature.
 - > Study grounds conservation and restoration measures of lakes on an economic analysis of the benefits they provide to citizens and, therefore, is relevant to the implementation of the EU water policy.

Ecosystem Services (xxxx) xxxx-xxxx

	Contents lists available at ScienceDirect	SERVICE
5500	Ecosystem Services	
ELSEVIER	journal homepage: www.elsevier.com/locate/ecoser	

Integrating spatial valuation of ecosystem services into regional planning and development

Ilpo Tammi^{a,*}, Kaisa Mustajärvi^b, Jussi Rasinmäki^c

* Council of Tampere Region, P.O. Box 1002, 33101 Tampere, Finland ^b Ramboll Finland Oy, Tampere, Finland ^c Simosol Oy, Rühimäki, Finland

- Assess a wide range of services in a spatially explicit way
- Focus is land use planning

o)

m) aesthetic nature interactions

(n) abiotic
provision of
hydropower,
peat (energy
and other uses)
and wind
power
(potential),

c) ES total(excl. abioticc) outputs),

p) total provision ES,

q) total regulation and maintenance ES,

r) r) total cultural ES.

Fig. 5. (continued)

0

k€ / a 330

Table 1

Ecosystem service Current rate p.a. Value (MC/a) Provision 380 NA Cultivated crops 0.6-37 t/ha 48.5 + 22.3 NS 28 Mkg meat, 0.12 Mm3 milk, 1.5 Mkg Reared animals 93.5 eggs Wild plants for nutrition 0.5-1.5 Mkg 0.6-2.0+1.1 NS Wild animals for nutrition 7 100 (Cervidae)+2.3 Mkg (fish, 15% 2.7 (deer)+1.5 (other game) freed) NS+5.7 (fish) Surface water 16.8 Mm³ 16.8 18.7 Mm^3 Ground water 22.5 Fibers from wood 3.7 Mm³ 110 Bioenergy (wood) 1.3 Mm³/2 600 GWh 54 NA Bioenergy (agro-) NA **Regulation and maintenance** NA 79-96 **CO₂sequestration** 3.4 31 54-61 t P, 0.9-1.2 Mt N 43 - 54Nutrient retention Pollination (demand-based) NA 4.1-9.9 (incl. domestic needs) +1.1 (honey) 306 - 434Cultural NA Close-to-home recreation and nature trips) Close-to-home trips 33.6 M+2.8 M NS, 118-144+9.7-12 NS (closeto-home), 9.3-17 (nature nature trips 0.09 M trips) Recreational values from holiday housing 38.4 d/a or 18 trips/user/a (cottages). 20.8 83-120 (holiday housing) and waters (e.g. boating) trips/pers, 4.2 M trips (boating etc.) +42-58 (boating etc.) Recreational value from hunting-gathering 10 000 hunters, 23.5 hunting days p.a. 168 6.3 (hunting)+12-33 (fishing) 000 fishers, 15.3 fishing days p.a. +12.9 (berries)+9.5 (fungi) NA 2.9 (METSO)-21.5 (WTP) Bequest (Aesthetic) nature interactions 3.2 photos/user, 18 000 photos/a, 0.3 NA users/km² Abiotic (non-ES) NA 44 150 MW/548 GWh Hydropower 21 - 240 Wind power ~ 0 GW h Peat extraction 1.1 Mm3/1.0 TWh (energy)+0.3 Mm3 23 (other) Total NA 760 - 910Total incl. abiotic NA 810-960

Current and potential annual rates and values for ES and abiotic natural outputs in the Tampere region. The potential value

potentials and their probable impact on unit values have not been accounted for. NS=non-spatially valued ES.

- ES framework provided a workable foundation for spatial ES valuation.
- Results already affected the Tampere regional plan 2040 proposal, altering the plan towards a more comprehensive guidance solution for ecosystem service hot-spots.

China

World:

GDP	91,679,969
ES	71,666,806
China:	
GDP	13,810,256
ES	3,586,924

The future value of ecosystem services: Global scenarios and national implications – Kubiszewski et al. 2017

Valuation of ES – South Africa

- 10 individual services were modelled and valued
- Using a range of techniques, but always local/national data

Fig. 3. Value of provisioning services in the form of (a) fodder production and (b) harvested natural resources, including instream water and estuarine/coastal resources.

Source: Turpie et al., 2017

SA - continued

Source: Turpie et al., 2017

Chapter 23. Developing Pilot Ecosystem Accounts in the European Union: Potential Policy Applications

Laure Ledoux and Jakub Wejchert Biodiversity Unit, DG Env.

TEEB-funded assessment of global biodiversity losses/interventions

- Significant methodological concerns arise from trying to estimate the *total* value of biodiversity
- Approach of TEEB is to assess *policy interventions,* i.e. marginal changes

challenge paper BIODIVERSITY

Salman Hussain Anil Markandya Luke M. Brander Alistair McVittie RUDOLF DE GROOT Olivier Vardakoulias Alfred Wagtendonk Peter H. Verburg

Policy	Policy change	Time scale
Agricultural productivity: closing the yield gap	40% crop and 20% livestock productivity increase (compared to 25% baseline)	2050
Post-harvest sector	Reduce post harvest losses from 30 to 15%	2050
Global agricultural trade	Full trade liberalisation from 2020	2050
Reduced impact logging	Replacement of conventional logging with RIL	2050
Protected areas	Expansion of protected areas from 14% of total land area to: 1.20% of each eco-region 2.50% of each eco-region	2030
Reduced emissions from deforestation and forest degradation (REDD)	Protect from agricultural expansion: 1.All dense forest and 2.All forest and woodlands	2030
Bio-energy	Increase from 0.5 to 4 million km ² for biomass	2050
Global dietary patterns	 Global transition to 'healthy diet' Complete substitution of meat with plant protein 	2050

- TEEB Quantitative Assessment intends to measure costs and benefits of policy scenarios relative to baseline

- Baseline developed from OECD projections:
 - World population grows from 6 to 9 billion
 - Fourfold increase in *economic output* (~ 2.8% per annum)
 - Per capita incomes grow particularly in BRIC countries
 - Agricultural productivity increases at 1.8% per annum does not keep pace with population or consumption patterns
 - No change in *environmental or trade legislation*
 - *Timber demand increases* with population and incomes
 - Global mean temperature increases to 1.6°C above pre-industrial level
 - No change in *protected areas* (14%)

Biodiversity loss by 2050: The Business As Usual baseline scenario

<u>Reducing biodiversity loss in 2050 relative to BAU:</u></u> Increased investment in Agricultural Productivity

TEEB database 1298 individual value estimates

Global Biomes

Terrestrial Biomes

Location of study sites

- Area (ha) of forest, lakes and rivers, mangrove, wetland, grassland, coral reef
- Population density (person/km²)
- Gross cell product (2005\$US) measure of economic output
- Urban area (ha)
- Roads (km)
- Net primary product (gC/m²/yr)
- Human appropriation of NPP (gC/m²/yr)
- Accessibility index travel time to urban centres

Forest value functions

Temperate forest			
Variable	Beta	Std. Error	Sig.
Constant	28.627	6.124	0.000
Natural log of the study site area	-0.420	0.076	0.000
Natural log of Gross Cell Product within 50km radius	0.247	0.150	0.104
Natural log of urban area within 50km radius of study site	0.245	0.143	0.092
Natural log of human appropriation of NPP within 50km radius of study site	-1.610	0.417	0.000
Ν	69		
Adjusted R ²	0.348		

Tropical forest			
Variable	Beta	Std. Error	Sig.
Constant	12.960	4.071	0.002
Natural log of the study site area	-0.230	0.070	0.001
Natural log of Gross Cell Product within 50km radius	0.402	0.173	0.022
Natural log of urban area within 50km radius of study site	0.424	0.121	0.001
Natural log of human appropriation of NPP within 50km radius of study site	-0.394	0.292	0.181
Natural log of area of forest within 50km radius of study site	-0.336	0.202	0.100
Natural log of length of roads within 50km radius of study site	-0.204	0.131	0.124
Ν	102		
Adjusted R ²	0.392		

Grassland value function

Grassland			
Variable	Beta	Std. Error	Sig.
Constant	-2.366	5.094	0.444
Natural log of country level GDP per capita (PPP US\$ 2007)	0.856	0.514	0.120
Natural log of area of grassland within 50km radius of study site	-0.029	0.142	0.839
Natural log of length of roads within 50km radius of study site	-0.225	0.213	0.309
Accessibility index	2.590	1.322	0.072
Ν	17		
Adjusted R ²	0.27		

<u>Change in biomes relative to BAU:</u> Investment in agricultural productivity

Results by biome and by Image region: Investment in agricultural productivity

		Grassland		Ter	nperate Fo	rest	Tropical Forest				
	Change in area ('000 km²)	Mean per ha value (US\$ 2007)	Annual value (bn US\$ 2007)	Change in area ('000 km²)	Mean per ha value (US\$ 2007)	Annual value (bn US\$ 2007)	Change in area ('000 km²)	Mean per ha value (US\$ 2007)	Annual value (bn US\$ 2007)		
OECD	418.4	645.0	19.7	181.1	23,389.1	28.8	1.9	9,916.5	0.6		
Central and South America	4.7	253.3	0.1	57.0	19,630.4	21.2	415.7	8,161.4	41.9		
Middle East and North Africa	64.6	325.0	1.7	-0.4	18,264.7	-0.2					
Sub-Saharan Africa	35.2	63.6	0.2	2.4	9,033.3	0.2	21.1	3,897.4	0.8		
Russia and Central Asia	-198.2	351.2	-4.1	-15.4	20,198.6	-2.1					
South Asia	461.1	146.1	4.3	5.5	10,886.6	1.5	20.7	7,376.6	3.2		
China Region	81.5	232.2	1.5	210.0	17,515.3	40.2	8.0	8,370.8	1.7		
Total	867.3		23.4	440.3		89.6	467.6		48.3		

Economic value change: Investment in Agricultural Productivity

Agricultural Productivity - High AKST

Value change 2000 to 2050 (US\$ bn 2007)

An economic appraisal of the Increased Agricultural Productivity Option

- Aggregate benefits (excluding Carbon) 2000 to 2050 = \$2964
 bn at 1% discount rate
- Aggregate cost (IIST, 2009)
 2000 to 2050 = **\$568 bn**
- B/C ratio without Carbon benefits= **5.2**
- Carbon benefits = \$6343 bn
- B/C ratio including carbon = 16.4

Acknowledgements

These materials have been developed in partnership with various organizations including the United Nations Statistics Division, UN Environment, the Convention on Biological Diversity, supported by the Norwegian Ministry of Foreign Affairs, and the European Union.

