

South African National Biodiversity Institute

stats sa

Department: Statistics South Africa **REPUBLIC OF SOUTH AFRICA**

environmental affairs

Department: Environmental Affairs REPUBLIC OF SOUTH AFRICA

Applying Natural Capital Accounting at the landscape scale: some early ideas and lessons from South Africa

Mandy Driver NCA Policy Forum Kampala, 18 November 2019

Celebrating biodiversity for the benefit and enjoyment of all South Africans

www.sanbi.org

Overview

- The landscape approach in South Africa
- Applying NCA at the catchment scale
 - Ecological Infrastructure for Water Security (EI4WS) project
 - Case study: Greater uMngeni catchment
- Five emerging lessons

The landscape approach has a long history in SA

- Multi-partner landscape-scale initiatives since early 2000s
- Global Environment Facility (GEF) funding has played a key role
- **g**ef
- CAPE (GEF 3), Grasslands Programme (GEF 4), Biodiversity & Land Use Project (GEF 5)
- All have included landscape or catchment
- initiatives in some form
- Approach captured in *Biodiversity for Development* book

Biodiversity for Development

South Africa's landscape approach to conserving biodiversity and promoting ecosystem resilience

South Africa's landscape approach to conserving biodiversity and promoting ecosystem resilience

Cadman et al, 2010 DEA, SANBI, UNDP

Key characteristics of the landscape approach

- Production landscapes mosaic of land uses
- Multiple partners across government, civil society and private sector
- Critical role of champions and communities of practice

ECOLOGICAL INFRASTRUCTURE FOR WATER SECURITY

Unlocking development finance to secure ecological infrastructure for water security in critical water catchments

GEF 6 **Ecological Infrastructure** for Water Security (EI4WS) project (2018 - 2022)

- Includes a component on **natural capital accounting**
- Includes work in two **demonstration catchments**

Environmental Affairs Science and Technology Water and Sanitation

ational Biodiversity Institute

What is ecological infrastructure?

- Naturally functioning ecosystems that deliver valuable services to people
 - Narrower concept than "green infrastructure"
- Nature's equivalent of built infrastructure
- Focus is on the **underlying asset**
- Several services can flow from one piece of ecological infrastructure

Ecological infrastructure provides cost effective, long-term solutions to service delivery

ECOLOGICAL INFRASTRUCTURE NATURE DELIVERING SERVICES

WHAT IS ECOLOGICAL INFRASTRUCTURE?

Ecological infrastructure refers to **functioning ecosystems that** deliver valuable services to people, such as frash water, climate regulation, soil formation and diseater risk reduction. It is the nature based equivalent of built or hard infrastructure, and is just as important, for providing services and under pinning socio economic development.

Ecological infrastructure includes, for instance, healthy mountain catchments, rivers, wellands, coastal dunes, and nodes and corridors of natural habitat, which together form a network of interconnected structural duments in the landscape.

ECOLOGICAL INFRASTRUCTURE IS A PUBLIC GOOD

South Africa has abundant ecological infrastructure, providing apportunities to support development and unlock economic potential. Because ecological infrastructure is largely free, its value is soldom captured in morket transactions and we tend to under-invest in it.

Like other public goods (such as education; health or street lights), investing in ecological infrastructure has positive spill over effects. And as with other public goods, the public sector has a central role to play in ensuring optimal investment in ecological infrastructure.

Ecological infrastructure supports and enhances built infrastructure

Degraded ecological infrastructure

leads to reduced capacity and lifespan of dames, and increased maintenance costs

Healthy ecological infrastructure

such as intact rivers, wetlands and natural vegetation enhances investment in built infrastructure

The concept of ecological infrastructure has gained a lot of policy traction in South Africa

Investing in ecological infrastructure is a cost effective development strategy that can deliver multiple benefits, including water security, food security, disaster risk reduction, climate change adaptation, job creation, rural development

Accounts to be produced in **Ecological Infrastructure for Water Security (EI4WS) project**

Demo catchments:

- Catchment-level water resource accounts
- Accounts for **ecological infrastructure assets**

Environmental Affairs Science and Technology Water and Sanitation

South African National Biodiversity Institute

Specifically aimed to support policy and decision making throughout the water value chain

 \rightarrow Accounts can enable analysis of return on investment in waterrelated ecological infrastructure

National

Sub-national

uMngeni catchment

- Supplies water to city of Durban: SA's 3rd largest city major challenges with water quality & quantity
- Engineers have run out of conventional engineering solutions

uMngeni Ecological Infrastructure Partnership (UEIP)

- Formed in 2013
 - More than 20 signatories, including Durban Metro, Umgeni Water, local municipalities, private companies (especially forestry), depts of water and agriculture, conservation authorities, SANBI, NGOs
- Focus on water security for Durban through investing in maintaining and restoring ecological infrastructure in greater uMngeni catchment
- Including through strengthening institutional arrangements and knowledge
- Many co-benefits (e.g. disaster risk reduction, climate change adaptation)

How is NCA being applied in the uMngeni catchment?

• A step back up to NCA work at the national level....

Natural Capital Accounting & Valuation of Ecosystem Services (NCA&VES) project

Five pilot countries: Brazil, China, India, Mexico, South Africa

Newly in place: Basic Spatial Unit for NCA

BSU 1 (728 million 1 ha cells): South Africa + EEZ + Transboundary basins

- Finalised June 2019
- 1 hectare grid
- Covers entire SA territory and EEZ
- Fixed point of origin, registered projection
- Any ecological, social or economic dataset can be linked to this grid
- Formal process for Stats SA custodianship as a strategic national dataset underway

BSU 2 (624 million 1 ha cells): South Africa's Prince Edward Islands + EEZ

National Land Cover datasets for 1990 and 2014: 72 classes 30m, resampled to 100m BSU

Row	Color	Class_Names			
0					
1	•	Water seasonal			
2		Water permanent			
3		Wetlands			
4		Indigenous Forest			
5		Thicket /Dense bush			
6		Woodlan/Open bush			
7		Grassland			
8 Shrubland I		Shrubland fynbos			
9 Low shrubla		Low shrubland			
10		Cultivated comm fields (high)			
11		Cultivated comm fields (med)			
12		Cultivated comm fields (low)			
13		Cultivated comm pivots (high)			
14 Cultivated		Cultivated comm pivots (med)	ed comm pivots (med)		
15	15 Cultivated comm pivots (low)				
16	16 Cultivated orchards (high)				
17	17 Cultivated orchards (med)				
18	18 Cultivated orchards (low)				
19	19 Cultivated vines (high)				
20 Cultivated vines		Cultivated vines (med)			
21 Cultivated vines (low)		Cultivated vines (low)			
22 Cultivated permanent pineapple		Cultivated permanent pineapple			
23 Cultivated subsistence (high)		Cultivated subsistence (high)			
24	24 Cultivated subsistence (med)				
25		Cultivated subsistence (low)			

26	Cultivated cane pivot - crop				
27	Cultivated cane pivot - fallow				
28	Cultivated cane commercial - crop				
29	Cultivated cane commercial - fallow				
30	Cultivated cane emerging - crop				
31	Cultivated cane emerging - fallow				
32	Plantations / Woodlots mature				
33	Plantation / Woodlots young				
34	Plantation / Woodlots clearfelled				
35	Mines 1 bare				
36	Mines 2 semi-bare				
37	Mines water seasonal				
38	Mines water permanent				
39	Mine buildings				
40	Erosion (donga)				
41	Bare none vegetated				
42	Urban commercial				
43	Urban industrial				
44	Urban informal (dense trees / bush)				
45	Urban informal (open trees / bush)				
46	Urban informal (low veg / grass)				
47	7 Urban informal (bare)				
48	Urban residential (dense trees / bush)				
49	Urban residential (open trees / bush)				
50	Urban residential (low veg / grass)				
51	Urban residential (bare)				
52	Urban school and sports ground				
Fol	11.1 HE 12 21 2 11 15				

53	Urban smallholding (dense trees / bush)				
54	Urban smallholding (open trees / bush)				
55	Urban smallholding (low veg / grass)				
56	Urban smallholding (bare)				
57	Urban sports and golf (dense tree / bush)				
58	Urban sports and golf (open tree / bush)				
59	Urban sports and golf (low veg / grass)				
60	Urban sports and golf (bare)				
61	Urban township (dense trees / bush)				
62	Urban township (open trees / bush)				
63	Urban township (low veg / grass)				
64	Urban township (bare)				
65	Urban village (dense trees / bush)				
66	Urban village (open trees / bush)				
67	Urban village (low veg / grass)				
68	Urban village (bare)				
69	Urban built-up (dense trees / bush)				
70	Urban built-up (open trees / bush)				
71	Urban built-up (low veg / grass)				
72	Urban built-up (bare)				

How does land cover change relate to changes in population? Census data also being linked to BSU layer to enable analysis

National ecosystem asset accounts: extent and condition

NCA&VES project: Pilot ecosystem service accounts for KZN province

Broad category	Ecosystem service		
Provisioning	Harvested wild biomass		
services	Reared animal production		
	Cultivated production		
Cultural	Experiential value associated with		
services	active or passive use		
Regulating	Sediment retention		
services	Water quality amelioration		
	Seasonal flow regulation		
2 3	Carbon sequestration		

Statistics South Africa REPUBLIC OF SOUTH AFRICA

South African National Biodiversity Institute

envíronmental research & monitoring

NCA&VES project: Pilot ecosystem service accounts for KZN province (physical and monetary)

Some initial results...

Led by Jane Turpie

El4WS project: Catchment-level water resource accounts

• Using WA+ framework

Data

- Hydrological modelling approach
- Strong land cover/use focus
 - Hierarchy of land cover/use classes, 1ha BSU grid

Water resource accounting outputs

Resource base sheet

Utilised flows sheet

Utilized Flows Sheet: uMngeni for 2017-10 to 2018-09

Units = $x 10^3 m^3$

Gross Withdrawal	Surface Water	Natural	Returned	Total Consumed 50774.7 36.5 %	
139100.0 100.0 %	139100.0 100.0 %	Cultivated 5260.4 3.8 %	Consumed 4165.5 79.2 %		
			Returned 15.13 0.3 %		
	Groundwater	Urban 133830.2 96.2 %	Consumed 46599.9 34.8 %	Total Returned	Surface Water
	0.0 %		Returned 80788.7 60.4 %	58.1 %	99.9 %
		Mining 0.0 0.0 %	Consumed 0.0 0.0 %		Groundwater 76.9
	Transfers 0.0 0.0 %		Returned		0.1 %
		Waterbodies 9.3 0.0 %	0.0 % Consumed 9.3 0.0 %		Transfers 0.0
		Hydropower 0.0 0.0 %	Returned 0.0 0.0 %		0.0 %

Time series water resource accounts: Example for the uMngeni catchment

Maps of water-related ecological infrastructure

including Strategic Water Source Areas, rivers and riparian zones, wetlands with high potential for specific ES

Key Ecological Infrastructure (Natural) Additional Ecological Infrastructure (Natural) Key Ecological Infrastructure (Degraded) Additional Ecological Infrastructure (Degraded) Transformed Ecological Infrastructure

Gathering spatial data on built infrastructure investments

What next?

- The challenge is not lack of data or even lack of natural capital accounts
- The challenge is to synthesise the various accounts and interpret them to create meaningful products for end users

 \rightarrow We are using "accounting for ecological infrastructure" at the catchment scale as an organising framework to bring together:

- National land accounts
- National ecosystem asset accounts
- Provincial ecosystem service accounts
- Catchment-level water resource accounts
- Social and economic data
- for application at the landscape level

Many envisaged uses and users of accounts for a with work best for these uses and users? ecological infrastructure...

Examples of uses

- Inform Catchment Management Strategy
- **Prioritise interventions to maintain and restore** ecosystems (e.g. wetland rehab, removing invasive
- Inform farming practices and agriculture programmes
- Inform water use auth
- Inform land
 - hat
 - Ject appraisal for built infrastructure il
- **N&E** e.g. of restoration efforts, including expendit socio-economic co-benefits such as jobs
- Calculate return on investment in ecological infrastruct.
- Influence municipal grant finance

co-production between producers and users of accounts

tutions

vestors

Five emerging lessons

1. Don't get stuck in the boundary trap

- Accounts don't necessarily have to produced at the landscape scale to be used at the landscape scale
- Accounts from a range of geographic levels (from national down) can be analysed and packaged for application at the landscape scale
- 2. Get your national BSU layer in place!

Five emerging lessons

- 3. Need iterative co-production of accounting outputs/interpreted products for application by managers and practitioners
 - Watch this space....
- 4. NSOs are not in the business of engaging with stakeholders at the landscape scale
 - → Need **boundary organisations** at the accounts-policy-practice interface
- 5. Ecological infrastructure can be a useful organising concept/frame for bringing together stakeholders AND for bringing together various accounts
 - Including linking ecosystem accounting to socio-economic info at the landscape level