Accounting for ecosystems in monetary terms – sequence of accounts

Ottawa, Canada, 2-4 October 2012

Bram Edens

Content

- Background
- Recording ecosystem services
- Recording degradation
- Questions for the London Group

Background

- The SNA describes a sequence of accounts:
 - Current accounts (production; income)
 - Accumulation accounts (capital; changes in volume)
 - Balance sheets
- Basic building blocks:
 - Units (classified into sectors or activities);
 - Engage in transactions;
 - Boundaries:
 - Production (income; consumption)
 - Asset boundary
 - Economic territory / residence
- SEEA CF uses this sequence adapted for depletion
- Q: How can ES and/or degradation be incorporated?

Recording ES in sequence of accounts

Two approaches:

- Ecosystems as independent producing unit that engages in transactions with standard institutional sectors; separate quasi-institutional sector (Model A)
 - Production function: $s_i \equiv F_i(E)$
- Ecosystems as part of the stock of assets of the various institutional sectors and hence no additional, quasi-sector is needed (Model B)
 - Production function: $s_i \equiv F_i(i, K, L, E)$

	Model A				Model B		
	Farmer	Household	Ecosystem	Total	Farmer	Household	Total
Production and generation of income accounts							
Output – SNA	200			200	200		200
Output – non-SNA			110	110	30		30
Total Output	200		110	310	230		230
Int. consumption – SNA	0		0	0	0		0
Int. consumption - non-SNA	80		0	80	0		0
Gross value added	120		110	230	230		230
Less Consumption of fixed capital (SNA)	10			10	10		10
Less Ecosystem degradation (non-SNA)			15	15	15		15
Degradation adjusted Net Value Added	110		95	205	205		205
Less Compensation of employees - SNA	50			50	50		50
Degradation adj. Net Operating Surplus	60		95	155	155		155
Allocation and use of income accounts							
Degradation adj. Net Operating Surplus	60		95	155	155		155
Compensation of employees - SNA		50		50		50	50
Ecosystem transfers – non-SNA	80	30	-110	0	-30	30	0
Disposable income	140	80	-15	205	125	80	205
Less Final consumption - SNA		200		200		200	200
Final consumption – non-SNA		30		30		30	30
Degradation adjusted net saving	140	-150	-15	-25	125	-150	-25

Pros and cons

- Both models extend the SNA production boundary
- Model A treats ecosystems similar to factories.
 - However, typically producting units are active (and not passive)
- Model B recognizes that ecosystems (and ES) are in almost all situations the result of human interaction with nature (e.g. a farmer modifies his land in order to increase crop yields).
 - However producing units may be unaware of their production of ecosystem services

Key degradation issues

- Degradation more complex than depletion:
 - Time dependency (e.g. environmental debt)
 - Some of the degradation costs may already be reflected in current output
 - Spatial dependency (e.g. transboundary flows)
 - Degradation supply vs degradation use
 - Capital services: producer is considered as both the supplier and user of the capital services delivered by the fixed asset.
 - The value of the CFC caused and borne is equivalent for the producing unit
 - ES: this is usually not the case
 - Possibility of rehabilitation / regeneration / enhancement
 - Assessed based upon existing use patterns or sustainable use patterns
 - Physical concept or monetary?

Degradation

- Model A and B recommend to disentangle the production of ecosystem services from the degradation of assets that generate these services
 - NB: there is an alternative approach: (e.g. Vanoli 1995 increasing consumption hereby reducing net savings)
- Still, there remain two approaches:
 - Degradation1: reduction in expected service flows from an ecosystem
 - Necessary conditions
 - Capacity could be assessed using reference benchmark conditions (changes in state of ecosystems)
 - Due to human activity
 - Both physical and monetary
 - Degradation2: reduction in ecosystem capacity
 - Based on changes in sustainable yield

Questions to the LG

- Is the sequence of economic accounts useful for ecosystem accounting?
- Would you favor Model A or B (or perhaps a mixed option)?
- Which approach do you favor in terms of degradation?
 - Multiple degradation concepts or favor a single one?
 - Which one?