

Research projects on creating global Monetary/Energy/Material EE SUT

Experiences from EU FP7 CREEA and other projects

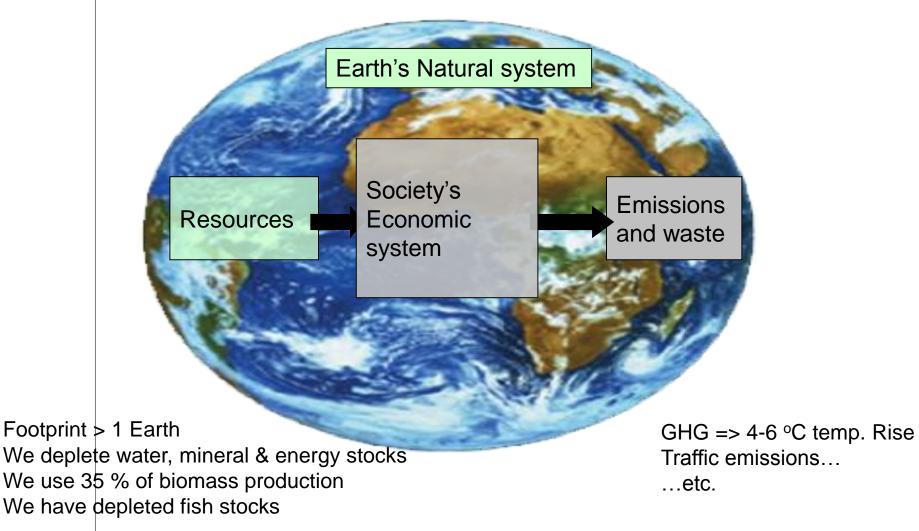
Prof. Arnold Tukker

Director Institute of Environmental Sciences (CML), Leiden University (70%) and TNO (30%) per 1 October 2013, small visiting position at NTNU

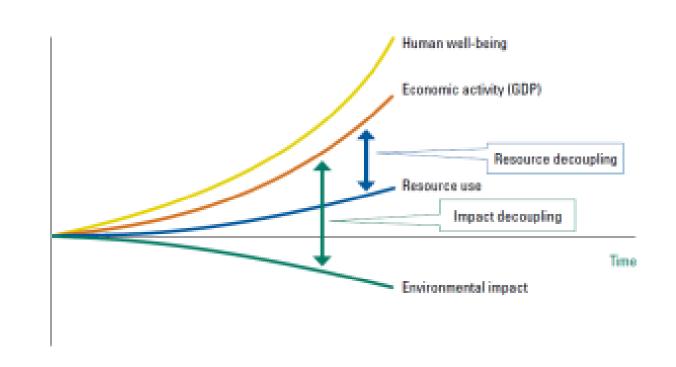
- Chemist, RUU, 1987
- Ministry of Environment < 1990, after this TNO, Program manager Sustainable Innovation & Economy (5 Mio Euro/yr)
- PhD in policy sciences, Tilburg University, 1997, prof. J. Cramer
- 20% professor of Sustainable Innovation, NTNU, Trondheim, Norway

London Group meeting, 12-14 November 2013, London

Introduction


- 1. <u>Resource Efficiency</u>, <u>Green Economy</u> and <u>Sustainable</u> <u>Consumption</u> are key UN and EU policies
- 2. <u>Eurostat</u> and <u>EEA</u> are the EU's official data and indicator providers
- 3. CML, TNO, NTNU, and partners gave major scientific support
 - Eurostat Data Centre Projects
 - Some 15 Million Euro of EU FP7 projects on global databases (EXIOPOL, CREEA, DESIRE, CARBON CAP)
 - 43 countries linked via trade
 - 160 sectors and product groups per country
 - 40 emissions, 80 resources, land and water per sector
 - Improvement of various impact indicators
- 4. This presentation
 - How we conceptualise the use of UN SEEA
 - State of the art in our and other projects
 - Experience with data availability and examples of assessments

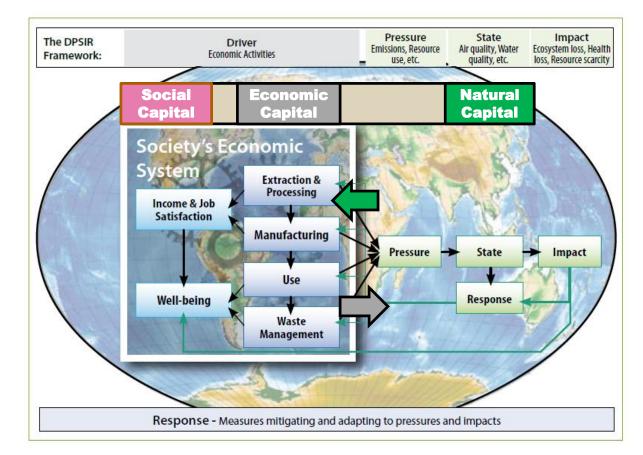
The sustainability problem



innovation for life

What we want to measure and achieve

UN/EU/OECD/Chinese/Japanese agenda's on Sustainable Consumption and Production, Resource Efficiency, Green Economy...all aim at improved human well-being decoupled from resource use and emissions

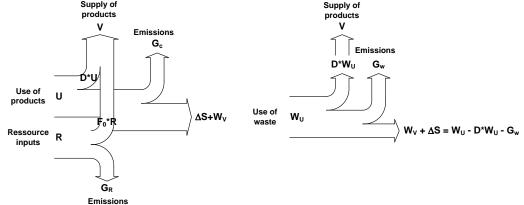


How we conceptually summarize SEEA

- 1. Elements
 - •Separate a Natural system and Socio-economic system
 - •Use Driver-Pressure-State-Impact-Response chain
 - Include Natural-Economic-Social capital stocks

•Global MR Input-Output Framework with extensions for economic system

TNO innovation for life



Some key working blocks covered in our projects

- EXIOPOL: Global MR EE IO/SUT 43 countries, 129 sectors, 40 emissions, 80 resources, land, water for 2000 finished
- CREEA:
 - Deeper experimentation with water, material/waste, forestry and carbon accounts
 - Where possible feeding into the 2007 version of EXIOBASE
 - New features
 - (Almost) full product detail of IEA energy products
 - Improved detailing and trade linking, using real transport and insurance information for margins
 - Estimated global physical-energy SUT which balances waste and material flows
 Supply of supply of supply of

for life

Some key working blocks covered in our projects

- DESIRE: Indicators for Res. Eff
 - EXIOBASE time series
 - Extra focus on
 - critical materials
 - <u>Biodiversity & ecosystem</u> <u>service indicators linked to</u> <u>economic activities</u>
 - <u>Beyound GDP as</u> <u>reference</u>
 - <u>Selecting meaningful</u> indicators
- CARBON-CAP: Consumption
 based carbon accounts
 - <u>Uncertainty assessments</u>
 - Policy measures & scenarios

Policy implications and implementation roadmap (WP8)

Review of similar work

Database name	Countries	Туре	Detail $(i \times p)^*$	Time	Extensions	Approach
EORA	World (around 150)	MR SUT/IOT	Variable (20-500)	1990–2009	Various	Create initial estimate; gather all data in original formats; formulate constraints; detect and judge inconsistencies; let routine calculate global MR SUT/IOT
EXIOPOL	World (43 + RoW)	MR SUT	129 × 129	2000**	30 emissions, 60 IEA energy carriers, water, land, 80 resources	Create SUTs; split use into domestic and imported use; detail and harmonize SUTs; use trade shares to estimate implicit exports; confront with exports in SUT; RAS out differences; add extensions
WIOD	World (40 + RoW)	MR SUT	35 × 59	1995–2009, annually	Detailed socio- economic and environmental satellite accounts	Harmonize SUTs; create bilateral trade database for goods and services; adopt import shares to split use into domestic and imported use; trade information for RoW is used to reconcile bilateral trade shares; add extensions
GTAP-MRIO	World (129)	MR IOT	57 × 57	1990, 1992, 1995, 1997, 2001, 2004, 2007	5 (GWP), Land use (18 AEZ), energy volumes, migration	Harmonize trade; use IOTs to link trade sets; IOT balanced with trade and macro-economic data
GRAM	World (40)	MR IOT	48×48	2000, 2004	Various	Use harmonized OECD IOTs; neglect differences like ixi and pxp; use OECD bilateral trade database to trade link
IDE-JETRO	Asia-Pacific (8: 1975) (10: 1985–2005)	MR IOT	56 × 56 (1975) 78 × 78 (1985– 1995), 76 × 76 (2000, 2005)	1975–2005	Employment matrices (2000, 2005)	Harmonize IOTs based on cross- country survey information; link via trade, manual balancing to reduce discrepancies within a certain bounds

TABLE 1. Review of the main GMRIO databases.

*i = number of industries, p = number of products, **The follow-up project CREEA constructs the EE GMRIO for 2007.

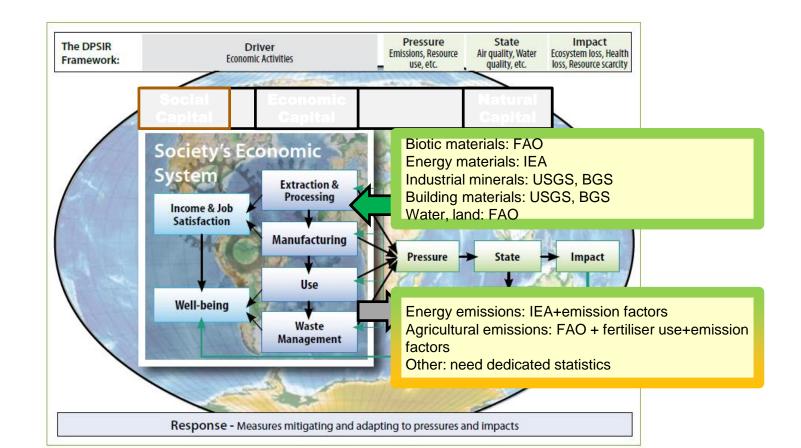
Tukker, Dietzenbacher (2013), Economic systems research 25, p 1-19

for life

Typical data situation: economic system

Economic data: UN SEEA supply & use / input output system: <u>good</u> (waste: <u>medium</u>)

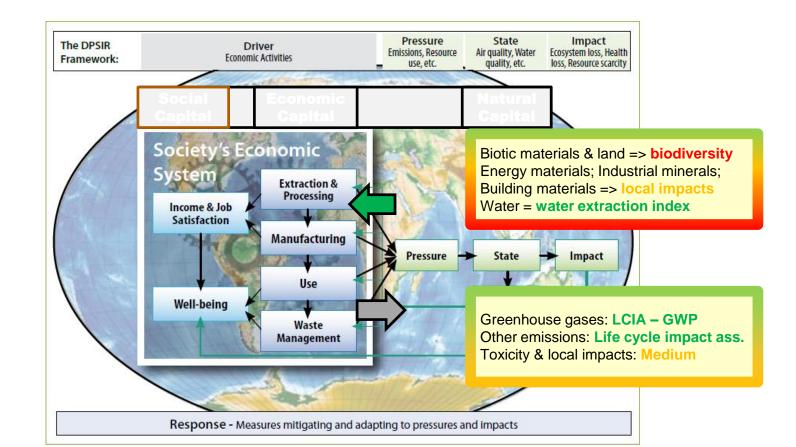
		Indus	stries		Y *,A	Y *,,B	Y _{*,C}	Y *,D	q
	Z _{A,A}	Z _{A,B}	Z _{A,C}	Z _{A,D}	Y _{A,A}	Y _{A,B}	Y _{A,C}	Y _{A,D}	q _A
Products	Z _{B,A}	Z _{B,B}	Z _{B,C}	Z _{B,D}	$\mathbf{Y}_{\mathrm{B,A}}$	Y _{B,B}	Y _{B,C}	Y _{B,D}	$q_{\rm D}$
Prod	Z _{C,A}	Z _{C,B}	Z _{C,C}	Z _{C,D}	Y _{C,A}	Y _{C,B}	Y _{C,C}	Y _{C,D}	q _c
	Z _{D,A}	Z _{D,B}	Z _{D,C}	Z _{D,D}	Y _{D,A}	Y _{D,B}	Y _{D,C}	Y _{D,D}	$q_{\rm D}$
w	W _A	W _B	W _c	W _D					
g	g _A	g _B	gc	g _D					
С & L	Capital _A Labor _A	C _B L _B	C _C L _C	C _D					
J	NAMEA _A	L _B NAMEA _B	NAMEA _C	L _D NAMEA _D					
ť	Agric _A	Agric _B	Agric _c	Agric _D					
Environ Ext	Energy _A	Energy _B	Energy _c	Energy _D					
Envir	Metal _A	Metal _B	Metal _c	Metal _D					
	Mineral _A	Mineral _B	Mineral _c	Mineral _D					
_	Land _A	Land _B	Land _c	Land _D					
							1	M	Was
				Re	espor	nse -	Meas	ures r	nitiga



TNO innovation for life

Typical data situation: pressures

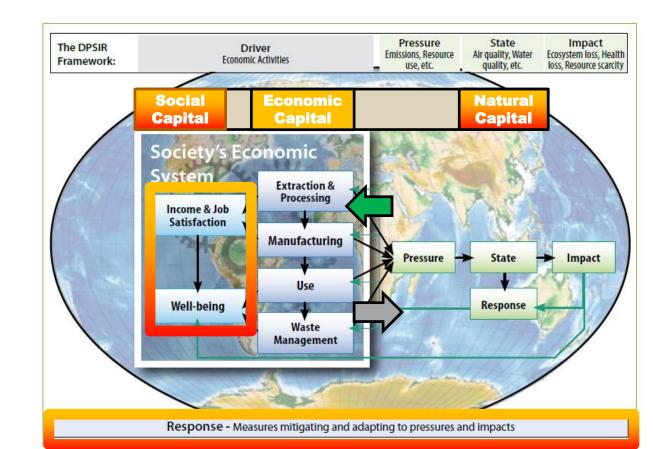
Pressures: resource extraction good , emissions: good to medium



TNO innovation for life

Typical data situation: impacts

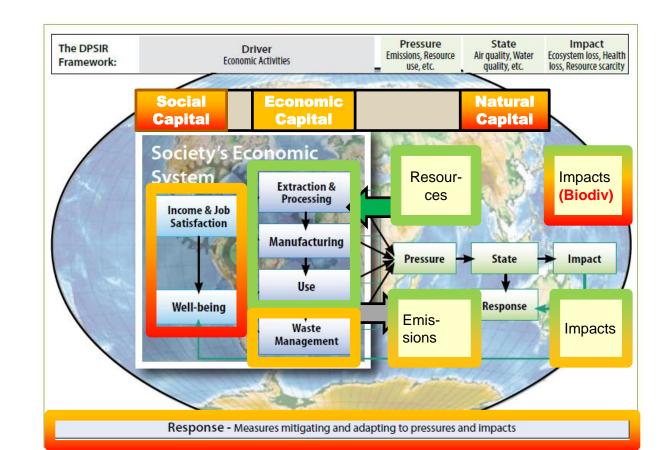
Impact indicators: emissions <u>good</u> (global warming) to <u>medium</u> (toxic impacts); resources <u>good</u> (water) to <u>bad</u> (biodiversity)



The innovation for life Typical data situation: responses & capital stocks

Responses: medium to bad

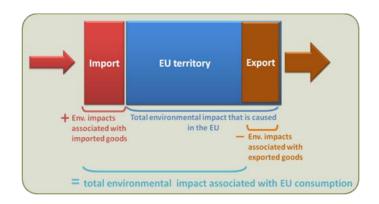
Economic capital: <u>medium</u>; Social and Natural capital: <u>medium</u> to <u>bad</u>; limited insights in <u>safe thresholds</u>

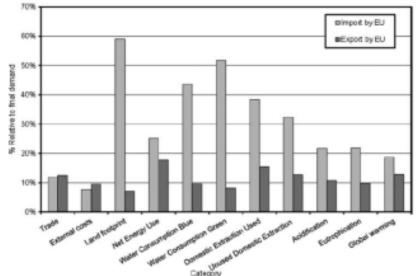


TNO innovation for life

(Simplistic?) summary

"Good": economic system; resource & emission pressures, some impacts Medium: Some emission pressures, some impacts, economic capital, waste Bad: part of social capital, natural capital, responses, biodiversity impacts Now to some examples with green boxes/available data!





Example 1: Impacts of EU27 consumption

1. Consumption & production perspective

 Example: % impacts of EU27 consumption abroad. Water, land, materials >30%

Note: Trade taken relative to Europe's final demand (which is given the small difference between exports and imports close to GDP). The global warming excludes emissions from land use change.

Example 2: 80% of impacts of consumption caused by

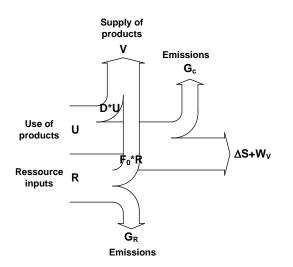
innovation

Food (meat and dairy)

Mobility

Housing (heating and cooling) and Electrical appliances

COICOP	Study	Dall et al.	Kok et al.	Labouze et al.	Nemry et al.	Nijdam and Wilting	CEDA EU25
	Indicator	Energy	Energy	GWP	GWP	GWP	GWP
	Main approach	Bottom- up	Hybrid	Bottom- up	Bottom- up	Ю	Ю
CP01-02	Food	26,2%	13,0%	7,0%NA	3,6%NA	22,1%	31,0%
CP03	Clothing	1,3%	2,2%	3,3%	1,3%	6,5%	2,4%
CP04-05	Housing	40,8%	54,3%	58,8%	53,5%	33,4%	23,6%
CP06	Health		1,8%		0,3%	0,3%	1,6%
CP07	Transport	19,5%	18,3%	29,6%	32,9%	17,3%	18,5%
CP08	Communication			0,0%	2,9%	0,0%	2,1%
CP09	Recreation	7,2%	8,1%	0,0%		15,1%	6,0%
CP10	Education		1,8%			0,7%	0,5%
CP11	Restaurants					2,8%	9,1%
CP12	Miscellaneous	5,1%	0,4%	1,3%	5,4%	1,8%	5,2%
	TOTAL	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%



Example 3: Resource-efficiency by sector

- Advanced method
- Estimates not only economic, but also physical relations in an Input-Output table
- Per sector
 - Input intermediate products
 + resources
 - Output of manufactured products
 - Output of waste and emissions

		Indus	stries		Y _{*,A}	Y _{*,B}	Y _{*,C}	Y _{*,D}	q
	Z _{A,A}	Z _{A,B}	Z _{A,C}	Z _{A,D}	$\mathbf{Y}_{\mathbf{A},\mathbf{A}}$	Y _{A,B}	Y _{A,C}	Y _{A,D}	q _A
ucts	Z _{B,A}	Z _{B,B}	Z _{B,C}	Z _{B,D}	$\mathbf{Y}_{\mathrm{B,A}}$	Y _{B,B}	Y _{B,C}	$\mathbf{Y}_{\mathrm{B},\mathrm{D}}$	\mathbf{q}_{D}
Products	Z _{C,A}	Z _{C,B}	Z _{c,c}	Z _{C,D}	Y _{C,A}	Y _{C,B}	Y _{C,C}	Y _{C,D}	q _c
	Z _{D,A}	Z _{D,B}	Z _{D,C}	Z _{D,D}	$\mathbf{Y}_{\mathrm{D,A}}$	Y _{D,B}	Y _{D,C}	Y _{D,D}	q _D
w	W _A	W _B	W _c	W _D					
g	g _A	g _B	gc	g _D					
βĽ	Capital _A	C _B	Cc	CD					
1	Labor _A	L _B	L _c	L _D					
	NAMEA _A	NAMEA _B	NAMEA _C	NAMEA _D					
l e	Agric _A	Agric _B	Agric _c	Agric _D					
Ш Ц Ц Ц Ц	Energy _A	Energy _B	Energy _c	Energy _D					
Environ Ext	Metal _A	Metal _B	Metal _c	Metal _D					
۳ س	Mineral _A	Mineral _B	Mineral _c	Mineral _D					
	Land _A	Land _B	Land _c	Land _D					

Example 4: Redundancy of indicators revisited

Despite the many indicator systems, the consumption perspective and impact indicators often are forgotten

[Pres	sures	Impa	acts	
	EU27 territory	Consum- ption	EU27 territory	Consum- ption	
Material Use	Domestic material use Domestic Material Consumption	Global material demand Raw Material Consumption	Territorial part of Life-Cycle Resource Indicator (Env. weighted Material Consumption)	Life-Cycle Resource Indicator (Env. weighted Material Consumption)	
Energy Use & Climate Change	Domestic energy use Gross Inland Energy Cons.	Global energy demand Energy Footprint	Domestic GHG emissions Territorial GHG Emissions	Global GHG emissions Carbon Footprint	
Water use	4 Domestic water use Water abstraction	0 Global water demand Water Footprint	12 Domestic water exploit. Water Exploitation Index	4 Global water exploit. Global Water Consumption Index	
Land Use	Domestic land use Domestic Land Demand	Global land demand Actual Land Demand (Footprint)	Domestic LU intensity Human Appropriation of Net Primary Production	Global LU intensity eHANPP, LEAC and other indicators on ecosystem quality	
	2	3	0	0	

Source: EU FP7 DESIRE project, TNO et al.

Recommendations (done at UN Beijing Workshop)

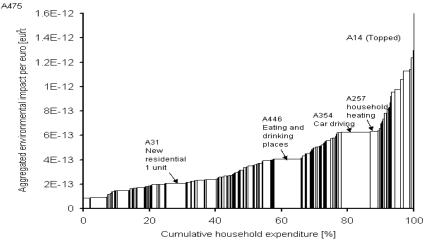
- 1. Use <u>UN SEEA</u> as an agreed <u>coherent concept</u>
- 2. Work where possible with existing data & indicator compilers
- 3. Use <u>UN SEEA</u>, existing <u>economic accounts</u> and <u>pressure databases</u> in combination with <u>existing impact assessment methods</u>
- Use an EE IO framework: ensures that with territorial accounts you can calculate <u>consumption-based accounts</u>
- 5. Research community but also London Group members have developed harmonization routines already good enough for a first informal data set
 - Detailing & harmonization
 - Linking via trade
 - Estimating emissions & resource uses with existing macro-databases
- 6. Data gaps: likely on **social capital**, **natural capital/state**, **responses**
- 7. Improve scientific basis for impact indicators (e.g. biodiversity)
- 8. Improve insights in thresholds related to natural and social capital

TNO innovation for life

Conclusions and recommendations

- Global MR EE IO databases are <u>still in development</u>; going in one step to a statistical accepted database is now too much
- 2. In the next 1-2 years we get much insight in <u>uncertainties between</u> <u>databases</u>
- 3. There is however a need to go 'beyound just research status'
- 4. How can we realise this? Some ideas
 - Get NSI Directors of some 5-10 interested countries/regions working already on this behind this (via a side event on an UN SD meeting?)
 - Joint project of such countries + researchers
 - Best practices
 - Maybe combining some first official data sets
 - Cf OECD working group on MFA
 - Use of international funding like Europe Aid Switch Asia for practical projects with Asian Statistical offices

Thanks for your attention!


Slides with additional examples

What you can calculate with EE SUT and IOT

- EU EIPRO (480 sector EE IOT)
 - Priority setting of products
 - Proved that food, mobility and housing were prio's
- EU Diet change
 - Change to healthy diets by changing demand vector
 - Showed rebounds by linking EE IOT to the CAPRI model

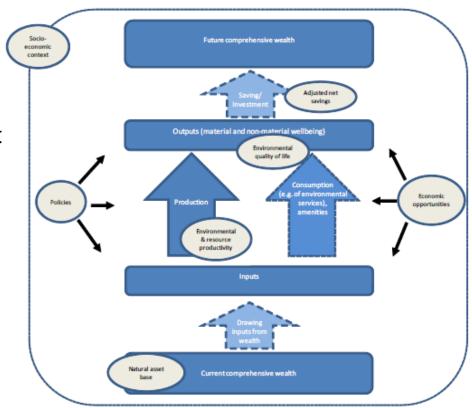
innovation

Tukker (ed., 2006), Journal Industrial Ecology 10: 3

	Aggregated environmental impacts (%)						
	Scenario O: Status quo	Scenario 1: Recommendations	Scenario 2: Recommendations including red meat reduction	Scenario 3: Mediterranean			
Sub-scenario 'All'							
Food	27	27	25	25			
Non-food	73	73	73	73			
Total	100	100	98	98			
Sub-scenario ' All + first order'							
Food	27	27	25	25			
Non-food	73	73	74	73			
Total	100	100	99	98			
Sub-scenario 'All + first and second orders'	100	100	99	99			

Based on a string of EU funded projects next to EEA and Eurostat work

- 1. Goal: building the most ambitious macro-database and dynamic model for
 - Economic interactions in and between countries (MR IO Table)
 - At a > 130 sector and product level
 - Including detailed emission and resource extraction data
- 2. Role of each project (total 15 Mio Euro, with TNO, CML, NTNU, SERI, others)
 - EXIOPOL: first version of the database, TNO government money: first version of a dynamic CGE model (EXIOMOD)
 - CREEA: 2nd base year; water extraction by river basin; using IEA and other information to create the worlds first physical and energy MR IO linked to economic data
 - DESIRE: builds MR EE IO time series; adds biodiversity indicators; rigorous assessment of resource indicators; identification of 'minimum useful set'
 - CARBON-CAP: consumption based emission analysis for climate policy
 - EMINIMM: quantifies diffusion of eco-innovation, to be fed into our model
 - POLFREE: aligns EXIOMOD with an environmental model; sophisticated evaluation of resource efficiency scenarios for Europe
 - DG ENV: visible scenario-analysis with the EXIOMOD model



To avoid indicator proliferation, we need a concept

- 1. Is in part logic thinking
- 2. Is in part alignment
- 3. Example: Green growth knowledge platform
 - Inputs: the natural asset base
 - Production: intensity/productivity
 - Outputs: material and non-material wellbeing

Note: White ovals represent indicator categories.

To sum up

- Measure natural capital stock / Environmental state & relevant thresholds
- 2. Measure well-being and social capital stock
- 3. Measure responses
- Get detailed stock-flow data of the economic system and its material flows and emissions; f.i. in an EE IO format following UN SEEA – which includes
 - Drivers
 - Capital stock
- 5. Gives one related dataset allowing for calculating pressures and impacts, from a consumption and territorial perspective

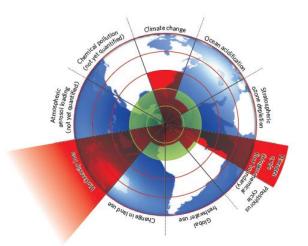
_			\downarrow						
		Y *,A	Y *,B	Y _{*,C}	Y _{*,D}	q			
	Z _{A,A}	Z _{A,B}	Z _{A,C}	Z _{A,D}	Y _{A,A}	Y _{A,B}	Y _{A,C}	Y _{A,D}	q _A
Products	Z _{B,A}	Z _{B,B}	Z _{B,C}	Z _{B,D}	Y _{B,A}	Y _{B,B}	Y _{B,C}	Y _{B,D}	q _D
Prod	Z _{C,A}	Z _{C,B}	Z _{c,c}	Z _{C,D}	Y _{C,A}	Y _{C,B}	Y _{C,C}	Y _{C,D}	q _c
	Z _{D,A}	Z _{D,B}	Z _{D,C}	Z _{D,D}	Y _{D,A}	Y _{D,B}	Y _{D,C}	Y _{D,D}	q _D
w	W _A	W _B	W _c	W _D					
g	g _A	g _B	g _c	g _D					
& L	Capital _A	C _B	C _C	C _D					
S	Labor _A	L _B	L _C	L _D					
	NAMEA _A	NAMEA _B	NAMEA _C	NAMEA _D					
Ŧ	Agric _A	Agric _B	Agric _c	Agric _D					
n Ext	Energy _A	Energy _B	Energy _c	Energy _D					
Environ	Metal _A	Metal _B	Metal _c	Metal _D					
	Mineral _A	Mineral _B	Mineral _c	Mineral _D					
	Land _A	Land _B	Land _c	Land _D					

Farth's Natural System

The DPSIR Framewor

Natural

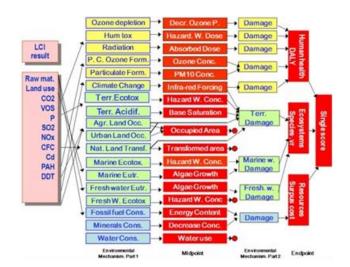
innovation



Some examples

1. Natural capital & thresholds

2. Well being and social capital (-)



innovation for life

Figure 1 | Beyond the boundary. The inner green shading represents the proposed safe operating space for nine planetary systems. The red wedges represent an estimate of the current position for each variable. The boundaries in three systems (rate of biodiversity loss, climate change and human interference with the nitrogen cycle), have already been exceeded.

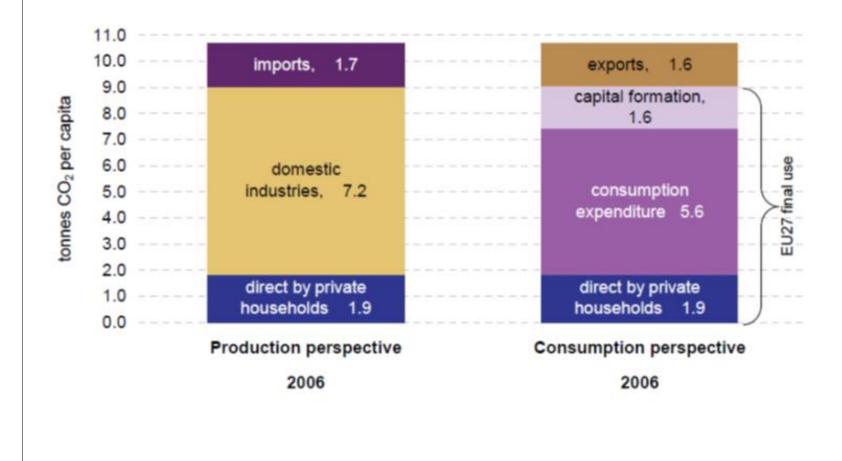
3. Responses (-)

 Stock-flow data in economy and related pressures and impacts

TNO innovation for life

How to select the 'best' indicator set

- Use the RACER concept
 - > relevant,
 - > acceptable,
 - > credible,
 - easy and
 - > robusť
- Use the Policy Cycle Concept do the indicators help in all steps?
 Use correlation analysis to understand which headline indicators have most saying power



innovation for life

Example 2: Carbon emissions of EU (Eurostat)

Source: Eurostat EE SUT/IOT project, DG JRC IPTS, TNO, CML, NTNU, RUG

TNO innovation for life

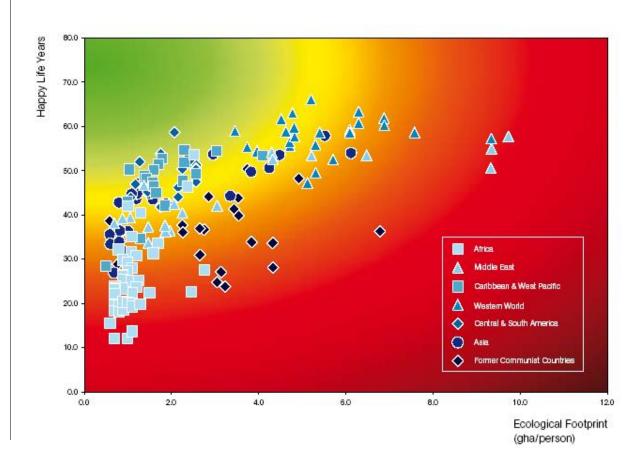
What are the key policy objectives?

1. SCP

"the use of services and related products which respond to basic needs and bring a <u>better quality of life</u> while <u>minimizing the use of natural resources</u> and toxic materials as well as the emissions of waste and pollutants over the life-cycle so as not to jeopardize the needs of future generations

2. Green Economy *"one that results in <u>improved human well-being</u> and social equity, while significantly <u>reducing environmental</u> <u>risks and ecological scarcities</u>"*

3. Resource Efficiency using the Earth's limited resources in a sustainable manner while minimising impacts on the environment. It allows us to create more with less and to <u>deliver greater</u> <u>value</u> with <u>less input</u>



innovation for life

Example 4: Quality of life versus impacts

Happy life years versus ecological footprint by country

