IDRISI supporting Tools for Ecosystem Services Analysis and Planning

Florencia Sangermano fsangermano@clarku.edu

Clark labs:

- A non-profit research center at Clark University
- Close links to the Graduate School of Geography, the Department of International Development, Community and Environment and the Marsh Institute
- Purpose of developing Geographic/Earth System Information technology to address the needs of effective decision making for social and environmental security and sustainable development.

Given these goals, our activities have been primarily focused on four areas:

- Software Development
- Analytical Research
- Applications Research
- Technology Transfer

IDRISI Resource Centers

University-based partners that provide assistance through consulting services, training, user meetings, conferences, workshops, translations, and so on. They are also important partners in providing beta testing and feedback on software development.

Software Products

Core Product: IDRISI GIS and Image Processing System

ArcGIS Extension

Land Change Modeler™

Supporting GIS for Ecosystem Services

Although there exist multiple tools for mapping and valuation of Ecosystem services, these tools require specific data inputs that need to be developed in advanced.

These input layers to ES tools include for example:

Land Use / Land cover data for current and future dates Climate Slope Watersheds

All these inputs are easily developed with tools within a GIS-IP system

idrisi

- Broad spectrum GIS and Image Processing System
- Primarily raster
- Can import –export and convert between at types

Support for land cover mapping

IDRISI includes a full image processing suite for image classification

Pre-processing tools

IDRISI includes the largest suite of **unsupervised** and **supervised** image classifiers in the industry, as well as **soft** and **hard** classifiers.

Minimum likelihood for classification (between 0.0-1.0): 0.0

0K

Output image :

Help

Close

....

LP - Multi-layer perceptron dassifier	Internation Internation
Classification C Regression C Train network C Load weights RI/S Errors v.s. iterations	
dependent variable images Number of files: 3 3 4/a 10 Insert layer group. 3/a 2 spweet2 4/a 3 spweet2 ya 4/a 3 spweet3 ya testing pixels per class 500 P use dynamic learning rate 0.0002005 Ya 10 use dynamic learning rate Ya 11 Use dynamic learning rate Ya 12 Use dynamic learning rate Ya 12 Use dynamic learning rate Ya 12 Use dynamic learning rate Layer 1 nodes : 5 Ya 12 Ya 12 Ya 14 detastification mice 1100 Ya 14 detastification mice 1100 Ya 14 detasti	 Old residential Industrial commercial Roads Ag-pasture Decidaous Wetland Grass-golf Conifer Shallow water
Module Results Error Matrix Analysis of SFTRAIN (columns : truth) against MLP1 (rows : mapped) 1 2 3 4 5 1 220 126 4 116 0 0.5168 2 4 4 15 0 0.2595 3 222 1 356 64 0 0.1964 5 0 0 0 0 0.02593 3 3 234 400 4 3 0.3023 3 1 1 0 0 0 0.0223 3 1 234 400 0 4 3 0.3023 3 1 1 0 0 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0022 Image: Save to File Copy to Clipboard Close Help	Civation Level 1: Old Residential

Segment-based Classification

Land Change Modeler

Land Change Modeler

Land Change Modeler: Change Prediction

Land Change Modeler: Validation

Land Change Modeler: REDD Forest Carbon Accounting with BioCF

Lisplay GES Analysis Modeling Image Processing Kerormat Data Entry Window List Help															
🙆 🚾 💱 🐜 👂 🖉 🖛 📜 🖬 🖷 🕘 😛	🗶 🗐 eês	1 MA 📥			5 🎫 💁 %	e	LCM	- •							
Color Pool Include/Exclude NA Dead wood Excluded NA NA NA	k 🤋 🥸	s 4 class agasca	ar La		S IP & A A		Index Mac	product 203 dagasca	, s. 6. Perations r Landus	stage	st		Inndcov_predia Madaga	iscar La	rations and use 2035 Forest Non-Forest Water Cloud
Biomass density (1 ho-1) within the REDD project area Names AB BB DW HWP L SDC Forest 125.07 22.62 Excluded Excluded Excluded Excluded Excluded Excluded Excluded Excluded Non-Forest 10.08 2.45 Excluded Excluded Excluded Excluded Excluded Calculate baseline deforestration and carbon stock changes Excluded Excluded Excluded Excluded Excluded Excluded Excluded Excluded Excluded Excluded															
Sources and GHG within the REDD project area															
Sources Gas Include/Exclude													20 C		
Biomass Burning CD2 Included															
CH4 [Included															
N2U Included															
Non-CO2 emissions (%) from forest fires	611	andcov pre	dict 2038	ladar											X
Name F burnt Burned AB Burned DV Burned L ICE AB ICE DW ICE L		A	0	C	0	100		<i>v</i>	4 1	NA .	N	0	0	0	
Forest 100 33 33 33 95 95 95		A Table 10: E	o anto n	at anthronog	onic CHC omissi	E no reduction		ĸ	L.	RVI	IN.	0	ус. 1	u	n (1)
	1	19016 19. 5	A ante n	erantitopog	enic and emissi	onreduction	(C-REDD)								
Non-Fores 100 33 33 33 95 95 95	-				Carbon B	acalina			Carbon Le	akage					
Non-Fores 100 33 33 33 95 95 95													Carbon	REDD	
Non-Fores 100 33 33 33 95 95 95	3 4	Project	Year	c	02	Non	-CO2	CC	2	Non-C	02	CO2	Carbon	REDD Non-6	CO2
Non-Fores 100 33 33 33 95 95 95	3 4 5	Project	Year	C	O2 Cumulative (tCD2e)	Non	-CO2 umulative (tCO2e) A	CC Innual (tCO2e) Cu	2 imulative (tCO2e) Ar	Non-C	O2 rulative(tC02e) A	CO2	Carbon	Non-(nnual (tCO2e) Cur	CO2 nulative (tCO2e)
Non-Fores 100 33 33 33 95 95 95	3 4 5 6	Project '	Year % 2006	C Innual (tCO2e) 1 70,548.95	02 Cumulative (tCD2e) 70,548.95	Non Annuai (tCO2e) C 2,008.75	-CO2 umulative(tCO2e) / 2,008.75	CC Unnual (tC02e) Cu 14,109.79	14,109.79	Non-C nnual (tCO2e) Cun 401.75	02 sulative (tC02e) A 401.75	CO2 nnual (tCO2e) C 24,692.13	Carbon umulative(tCO2e) A 24,692.13	Non-G nnual (±CO2e) Cur 703.06	CO2 mulative(tCD2e) 703.06
Non-Fores 100 33 33 33 95 95 95	3 4 5 6 10	Project ' No 1 5	Year // 2006 2010	C Innual (tCO2e) 70,548.95 70,548.95	Cumulative (tCD2e) 70,548.95 352,744.75	Non Annual (tC02e) C 2,008.75 2,008.75	-CO2 umulative (tCO2e) A 2,008.75 10,043.77	CC Innual (tC02e) Cu 14,109.79 14,109.79	02 imulative (tC02e) Ar 14,109.79 70,548.95	Non-C nnuai (tCO2e) Cun 401.75 401.75	02 sulative (tC02e) A 401.75 2,008.75	CO2 nnuol(tC02e) C 24,692.13 24,692.13	Carbon umulative(tCO2e) A 24,692.13 123,460.66	REDD Non-(nnual (±C02e) Cur 703.06 703.06	CO2 mulacive(tC02e) 703.06 3,515.32
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-C02 emission from forest fires	3 4 5 6 10 15	Project	Year 2006 2010 2015	0 (nnual (tC02e) 70,548.95 70,548.95 69,484.08	Cumulative (tCO2e) 70,548.95 352,744.75 700,165.25	Non Annual (tC02e) C 2,008.75 2,008.75 1,978.43	-CO2 umulative(tCO2e) A 2,008.75 10,043.77 19,935.93	CC Innual (tCO2e) Cu 14,109.79 14,109.79 13,896.82	14,109.79 70,548.95 140,033.02	Non-C nuusi (rC02e) Cun 401.75 401.75 395.69	02 401.75 2,008.75 3,987.19	CO2 24,692.13 24,692.13 41,690.45	Carbon umulative (tCO2e) A 24,692.13 123,460.66 331,913.03	REDD Non-(nnusi (±CO2e) Cui 703.06 703.06 1,187.06	CO2 mulative (tCO2e) 703.06 3,515.32 9,450.62
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-CD2 emission from locest fires 2 1	3 4 5 6 10 15 20	Project 1 No 1 5 10 15	Year 2006 2010 2015 2020	C 70,548.95 70,548.95 69,484.08 69,350.17	02 20mmulative (tC02e) 70,548.95 352,744.75 700,165.25 1,046,916.06	Non Annual (tCO2e) C 2,008.75 2,008.75 1,978.43 1,974.62	-CO2 umulative (tC02e) A 2,008.75 10,043.77 19,935.93 29,809.04	CC Innual (tCO2e) Cu 14,109.79 14,109.79 13,896.82 6,935.02	2 imulative (tC02e) Ar 14,109.79 70,548.95 140,033.02 174,708.09	Non-C nuudi (tCO2e) Cun 401.75 401.75 395.69 197.46	02 ulative (tC02e) A 401.75 2,008.75 3,987.19 4,974.50	CO2 24,692.13 24,692.13 41,690.45 55,480.14	Carbon umulative(tC02e) A 24,692.13 123,460.66 331,913.03 609,313.69	REDD Non-(nnual (tCO2e) Cut 703.06 703.06 1,187.06 1,579.70	CO2 mulative (tCO2e) 703.06 3,515.32 9,450.62 17,349.11 =
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-C02 emission from forest fires R Project Success and Leakage ?	3 4 5 6 10 15 20 25	Project * *** 1 5 10 15 20	Year 2006 2010 2015 2020 2025	C innud (2002e) 70,548.95 70,548.95 69,484.08 69,350.17 68,451.10	Cumulative (tC02e) 70,548.95 352,744.75 700,165.25 1,046,916.06 1,389,171.75	Non Annual (tC02e) C 2,008.75 2,008.75 1,978.43 1,974.62 1,949.02	-CO2 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14	CC Innual (tCO2e) Cu 14,109.79 14,109.79 13,896.82 6,935.02 6,845.11	2 imulative (tCO2e) Av 14,109.79 70,548.95 140,033.02 174,708.09 208,933.64	Non-C Nousi (tCO2e) Cun 401.75 401.75 395.69 197.46 194.90	02 401.75 2,008.75 3,987.19 4,974.50 5,949.00	CO2 anual (tCO2e) C 24,692.13 24,692.13 41,690.45 55,480.14 54,760.88	Carbon umulative(tC02e) A 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19	REDD Non-(nnual (tCO2e) Cut 703.06 1,187.06 1,579.70 1,559.22	CO2 mulative (cCO2e) 703.06 3,515.32 9,450.62 17,349.11 25,145.18
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-C02 emission from forest fires	3 4 5 6 10 15 20 25 30	Project * *** 1 5 10 15 20 25	Year 2006 2010 2015 2020 2025 2030	C 70,548.95 70,548.95 69,484.08 69,350.17 68,451.10 70,899.66	Construction of Construction o	Non Annual (tC02e) C 2,008.75 2,008.75 1,978.43 1,974.62 1,949.02 2,018.74	CO2 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.83	CO Innual (tCO2e) Cu 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97	22 intuiative (tC02e) 14,109.79 70,548.95 140,033.02 174,708.09 208,933.64 244,383.48	Non-C Nous (tc02e) Cun 401.75 401.75 395.69 197.46 194.90 201.87	02 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38	CO2 24,692.13 24,692.13 41,690.45 55,480.14 54,760.88 56,719.73	Carbon umulative (cCO2e) A 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19 1,166,717.00	REDD Non-(nnual (tCO2e) Cut 703.06 1,187.06 1,579.70 1,559.22 1,614.99	202 T03.06 3.515.32 9.450.62 17.349.11 25.145.18 33.220.14
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-CD2 emission from forest fires Reporting Interval Leakage ? Reporting Interval Leakage Rate(\$) Success Rate(\$) Effective(\$) Stage 01: 2006-2010 20 55 35	3 4 5 10 15 20 25 30 35	Project * *** 1 5 10 15 20 25 30	Year 2006 2010 2015 2020 2025 2030 2035	0,548.95 70,548.95 69,484.08 69,350.17 68,451.10 70,899.66 67,481.88	Cumulative (rC02e) 70,548.95 352,744.75 700,165.25 1,046,916.06 1,389,171.75 1,743,670.25 2,081,079.50	Non Annual (tCO2e) C 2,008.75 2,008.75 1,978.43 1,974.62 1,949.02 2,018.74 1,921.42	CO2 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.83 59,254.96	CC Innual (tCO24) Cu 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97 6,748.19	22 intuiative (tC02e) Au 14,109.79 70,548.95 140,033.02 174,708.09 208,933.64 244,383.48 278,124.44	Non-C nous (tcO2e) Cun 401.75 395.69 197.46 194.90 201.87 192.14	02 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38 7,919.09	CO2 anual (tC02e) C 24,692.13 24,692.13 41,690.45 55,480.14 54,760.88 56,719.73 53,985.51	Carbon vimulative (tC02e) A 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19 1,166,717.00 1,436,644.38	REDD Non-(nnual (tcO2e) Cut 703.06 1,187.06 1,579.70 1,559.22 1,614.99 1,537.14	CO2 T03.06 3,515.32 9,450.62 17,349.11 25,145.18 33,220.14 40,905.84
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-CD2 emission from lorest fires Calculate baseline non-CD2 emission from lorest fires 2 Reporting Interval Leakage Rate(2) Success Rate(2) Effective(2) 6 Stage 01: 2006-2010 20 55 35 5 35 Stage 02: 2011-2015 20 80 60 60	3 4 5 6 10 15 20 25 30 35 36	Project 7 No 1 5 10 15 20 25 30	Year 2006 2010 2015 2020 2025 2030 2035	C innuel (2022) 1 70,548.95 69,484.08 69,350.17 68,451.10 70,899.66 67,481.88	Construction of the second of	Non Annuel (tC02e) C 2,008.75 2,008.75 1,978.43 1,974.62 1,949.02 2,018.74 1,921.42	-CO2 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.83 59,254.96	CCC Innuel (tCO2e) Cu 14,109.79 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97 6,748.19	22 mmulative (tCO2e) A 14,109.79 70,548.95 140,033.02 174,708.09 208,933.64 244,383.48 278,124.44	Non-C nnuai (tCO2e) Cun 401.75 401.75 395.69 197.46 194.90 201.87 192.14	02 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38 7,919.09	CO2 24,692.13 24,692.13 41,690.45 55,480.14 54,760.88 56,719.73 53,985.51	Carbon 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19 1,166,717.00 1,436,644.38	REDD Non-(nnual (±C02e) Cut 703.06 1,187.06 1,579.70 1,559.22 1,614.99 1,537.14	CO2 mulacive (CC2e) 703.06 3.515.32 9.450.62 17.349.11 25,145.18 33,220.14 40,905.84
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-C02 emission from forest fires Project Success and Leakage ? Reporting Interval Leakage Rate(%) Effective(%) Stage 01: 2006-2010 20 55 35 Stage 02: 2011-2015 20 80 60 Stage 03: 2016-2020 10 90 80 🔾	3 4 5 6 10 15 20 25 30 35 36 37	Project 7 No 1 5 10 15 20 25 30	Year 2006 2010 2015 2020 2025 2030 2035	C 70,548.95 70,548.95 69,484.08 69,350.17 68,451.10 70,899.66 67,481.88	O2 20 20 20 20 20 20 20 20 20 2	Non Annual (tc02a) c 2,008.75 2,008.75 1,978.43 1,974.62 1,949.02 2,018.74 1,921.42	-CO2 umulative (rc02e) / / 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.83 59,254.96	CCC Innual (tC02e) Cu 14,109.79 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97 6,748.19	22 14,109.79 70,548.95 140,033.02 174,708.09 208,933.64 244,383.48 278,124.44	Non-C nuudi (rC02e) Cun 401.75 401.75 395.69 197.46 194.90 201.87 192.14	02 sulative (c022) 4 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38 7,919.09	CO2 24,692.13 41,690.45 55,480.14 54,760.88 56,719.73 53,985.51	Carbon wmuletive (tCO3e) A 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19 1,166,717.00 1,436,644.38	REDD Non-4 nnual (±CO2e) Cur 703.06 1,187.06 1,579.70 1,559.22 1,614.99 1,537.14	CO2 703.06 3,515.32 9,450.62 17,349.11 25,145.18 33,220.14 40,905.84
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-C02 emission from forest fires Calculate baseline non-C02 emission from forest fires Reporting Interval Leakage ? Reporting Interval Leakage Rate(%) Effective(%) * Stage 01: 2006-2010 20 55 35 * Stage 02: 2011-2015 20 80 60 * Stage 03: 2016-2020 10 90 80 •	3 4 5 6 10 15 20 25 30 35 36 37 37 38	Project 1 No 1 5 10 15 20 25 30 C-Baseline	Year 2006 2010 2015 2020 2025 2030 2035 ************************************	C Innual (5023) 1 70,548.95 69,484.08 69,350.17 68,451.10 70,899.66 67,481.88 re greenhous	02 2000 (CO20) 70,548.95 3352,744.75 700,165.25 1,046,916.06 1,389,171.75 1,743,670.25 2,081,079.50 e gas emissions s	Non Annual (tc02e) c 2,008.75 2,008.75 1,978.43 1,974.62 1,949.02 2,018.74 1,921.42 within the proj	-CO2 umularive (tC02e) / A 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.83 59,254.96 ect area; tCO2e	CC Innual (tC02e) Cu 14,109.79 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97 6,748.19	22 imulative (c022) Av 14,109.79 70,548.95 140,033.02 174,708.09 208,933.64 244,383.48 278,124.44	Non-C 401.75 401.75 395.69 197.46 194.90 201.87 192.14	02 sulative (rc02e) x 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38 7,919.09	CO2 24,692.13 24,692.13 41,690.45 55,480.14 54,760.88 56,719.73 53,985.51	Carbon umulative (cC02e) A 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19 1,166,717.00 1,436,644.38	REDD Non-1 nnual (KO2e) Cui 703.06 703.06 1,187.06 1,579.70 1,559.22 1,614.99 1,537.14	202 T03.06 3,515.32 9,450.62 17,349.11 25,145.18 33,220.14 40,905.84
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-CD2 emission from lorest fires Reporting Interval Leakage ? Reporting Interval Leakage Rate(\$) Success Rate(\$) Effective(\$) Stage 01: 2006-2010 20 55 35 5 Stage 02: 2011-2015 20 80 60 90 Calculate ex ante net GHG emission inductions Calculate ex ante net GHG emission inductions	3 4 5 6 10 15 20 25 30 35 36 37 8 8 38 39	Project 1 No 1 5 10 15 20 25 30 C-Baseline C-Actual:	Year 77 2006 2010 2015 2020 2025 2030 2035 2035 2035 2035	Connuel (sc02a) 70,548.95 70,548.95 69,484.08 69,350.17 68,451.10 70,899.66 67,481.88 re greenhouse greenhouse	02 20.548.95 352,744.75 700,165.25 1,046,916.06 1,389,171.75 1,743,670.25 2,081,079.50 e gas emissions wi	Non Annual (tC024) C 2,008.75 2,008.75 1,978.43 1,974.62 2,018.74 1,921.42 within the projection	-CO2 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.83 59,254.96 ect area; tCO2e tt area; tCO2e	CCC Innuel (ICO2e) Cu 14,109.79 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97 6,748.19	22 mulative (c02e) A0 14,109.79 70,548.95 140,033.02 174,708.09 208,933.64 244,383.48 278,124.44	Non-C nuudi (trC02e) Cun 401.75 401.75 395.69 197.46 194.90 201.87 192.14	02 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38 7,919.09	CO2 24,692.13 24,692.13 41,690.45 55,480.14 54,760.88 56,719.73 53,985.51	Carbon umulative (rc03e) A 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19 1,166,717.00 1,436,644.38	REDD Non-1 nnuar(tCO2e) Cui 703.06 703.06 1,187.06 1,579.70 1,559.22 1,614.99 1,537.14	202 T03.06 3,515.32 9,450.62 17,349.11 25,145.18 33,220.14 40,905.84
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-CO2 emission from forest fires Calculate baseline non-CO2 emission from forest fires 2 Reporting Interval Leakage Rate(2) Success Rate(2) Effective(2) 6 Stage 01: 2006-2010 20 80 60 5 35 5 Stage 03: 2016-2020 10 90 80 Calculate ex ante net GHIS emission reductions	3 4 5 6 10 15 5 20 25 30 35 36 37 38 39 9 40	Project 1 No 1 5 10 15 20 25 30 C-Baseline C-Actual: C-Leakage:	Year 77 4 2006 2010 2015 2020 2025 2030 2035 20 20 20 20 20 20 20 20 20 20	Connuel (1c02a) 70,548.95 70,548.95 69,484.08 69,350.17 68,451.10 70,899.66 67,481.88 greenhouse greenhouse greenhouse	02 Cumulative (cCO2e) / 700,548.95 352,744.75 700,165.25 1,046,916.06 1,389,171.75 1,743,670.25 2,081,079.50 e gas emissions wi e gas emissions wi e gas emissions wi	Non Annual (tc024) c 2,008.75 2,008.75 1,978.43 1,974.62 2,018.74 1,921.42 within the project tC02e	CO2 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.83 59,254.96 iect area; tCO2e ct area; tCO2e	CCC Innual (1CO2a) Cu 14,109.79 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97 6,748.19	22 mulative (c02e) A 14,109.79 70,548.95 140,033.02 174,708.09 208,933.64 244,383.48 278,124.44	Non-C 110001 (FCO20) Cun 401.75 395.69 197.46 194.90 201.87 192.14	02 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38 7,919.09	CO2 24,692.13 24,692.13 41,690.45 55,480.14 54,760.88 56,719.73 53,985.51	Carbon umulative (rc02e) / A 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19 1,166,717.00 1,436,644.38	REDD Non-(703.06 703.06 703.06 1,187.06 1,579.70 1,559.22 1,614.99 1,537.14	CO2 mulacive (CO2e) 703.06 3.515.32 9.450.62 17,349.11 25,145.18 33,220.14 40,905.84
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-C02 emission from forest fires Calculate baseline non-C02 emission from forest fires 7 Reporting Interval Leakage Rate(%) Effective(%) 5 Stage 01: 2006-2010 20 55 35 5 Stage 03: 2016-2020 10 90 80 © Calculate ex ante net GHG emission reductions Calculate ex ante net GHG emission reductions	3 4 5 6 10 15 20 25 30 35 36 37 88 40 0 40	Project 1 No 1 5 10 15 20 25 30 C-Baseline C-Actual: C-Leakage: C-REDD:	Year 77 / 2006 2010 2015 2020 2025 2030 2035 2	C 70,548.95 70,548.95 69,484.08 69,450.17 68,451.10 70,899.66 67,481.88 be greenhous greenhous greenhous thropogenic	02 2	Non Annual (tCO2e) C 2,008.75 2,008.75 1,978.43 1,974.62 1,949.02 2,018.74 1,921.42 within the proje thin the proje tCO2e emission redu	CO2 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.83 59,254.96 iect area; tCO2e ct area; tCO2e ction attributabl	CCC Insuer (1cC2e) Cu 14,109.79 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97 6,748.19 ke to the RED	22 mulative (rc02a) Al 14,109.79 70,548.95 140,033.02 174,708.09 204,933.64 244,383.48 278,124.44	Non-C nuud (trC02e) Cun 401.75 395.69 197.46 194.90 201.87 192.14	02 suitative (CO22) × 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38 7,919.09	CO2 24,692.13 24,692.13 41,690.45 55,480.14 55,480.14 55,719.73 53,985.51	Carbon umulative (cC02e) A 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19 1,166,717.00 1,436,644.38	REDD Non-4 703.06 703.06 1,187.06 1,579.70 1,559.22 1,614.99 1,537.14	202 T03.06 3,515.32 9,450.62 17,349.11 25,145.18 33,220.14 40,905.84
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-CD2 emission from forest fires Project Success and Leakage ? Reporting Interval Leakage Rate(\$) Effective(\$) Stage 01: 2006-2010 20 55 35 Stage 02: 2011-2015 20 80 60 Stage 03: 2016-2020 10 90 80 Calculate ex ante net GHG emission reductions	3 4 5 6 10 15 20 25 30 35 36 35 36 37 38 40 41 41 42	Project 1 No 1 5 10 15 20 25 30 C-Baseline C-Actual: C-Leakage: C-REDD:	Year 77 / 2006 2010 2015 2020 2025 2035 2	C 10,548,95 10,548,95 69,484,08 69,380,17 68,451,10 10,899,66 67,481,88 10,899,66 67,481,88 10,899,66 10,481,88 10,899,66 10,481,88 10,599,66 10,599,6	02 20.548.95 352,744.75 700,165.25 1,046,915.06 1,389,171.75 2,081,079.50 e gas emissions vi gas emissions vi e gas e	Non Annual (tCO2a) C 2,008.75 2,008.75 2,008.75 1,978.43 1,974.62 1,949.02 2,018.74 1,921.42 2,018.74 1,921.42 within the project tCO2e emission redu	CO2 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.43 59,254.96 ect area; tCO2e ct area; tCO2e ct area; tCO2e	CCC Innuel (ICO2e) Cu 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97 6,748.19	02 mulative (rc02a) Au 14,109,79 70,548,95 140,033.02 174,708.09 208,933.64 244,383.48 278,124.44	Non-C neusi(fc02e) Cun 401.75 395.69 197.46 194.90 201.87 192.14	02 tuletive (tC02e) A 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38 7,919.09	CO2 24,692.13 24,692.13 41,690.45 55,480.14 54,760.88 56,719.73 53,985.51	Carbon umulative (tC02e) A 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19 1,166,717.00 1,436,644.38	REDD Non-4 703.06 703.06 1,187.06 1,559.72 1,614.99 1,537.14	202 T03.06 3,515.32 9,450.62 17,349.11 25,145.18 33,220.14 40,905.84
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-CD2 emission from lorest fires Calculate baseline non-CD2 emission from lorest fires ? ? Reporting Interval Leakage Rate(\$) Success Rate(\$) Effective(\$) ? Stage 01: 2006-2010 20 55 35 ? ? Stage 02: 2011-2015 20 80 60	3 4 5 6 10 25 20 25 30 35 36 35 36 37 38 40 40 41 4 4 4 4 4 4 4 4	Project * No 1 5 10 15 20 25 30 C-Baseline C-Actual: C-Leakage: C-REDD: * 1 C-REDD:	Year 2006 2010 2015 2020 2025 2030 2035 Baselin Actual Leakay Net an	C 10,548,95 70,548,95 69,484,08 69,484,08 69,484,08 69,480,08 67,481,88 regreenhouse greenhouse greenhouse thropogenic thropogenic	02 20.548.95 352,744.75 700,165.25 1,046,916.06 1,389,171.75 2,081,079.50 e gas emissions will e gas e	Non Annual (tcc2a) C 2,008.75 2,008.75 2,008.75 1,978.43 1,974.62 2,018.74 2,018.74 2,018.74 1,991.42 2,018.74 1,921.42 within the proje ticO2e emission redu	CO2 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.83 49,647.83 49,647.83 49,647.84 6,002 ct area; tCO2e ct area; tCO2e ction attributabl 12 _ Table 13	CCC Innual (ICO2e) Cu 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97 6,748.19 6,748.19	22 mulative (c02e) A0 14,109.79 70,548.95 140,033.02 174,708.09 208,933.64 244,383.48 278,124.44	Non-C nuudi (†¢024) Cun 401.75 395.69 197.46 194.90 201.87 192.14	02 sulative (CO2a) 4 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38 7,919.09	CO2 Anual (tCO2e) C 24,692.13 41,690.45 55,480.14 54,760.88 56,719.73 53,985.51	Carbon umulative (rc03e) A 24,692.13 123,460.63 331,913.63 331,913.63 609,313.69 883,118.19 1,166,717.00 1,436,644.38	REDD Non-d nnuar (±C02#) Cur 703.06 703.06 1,137.06 1,559.22 1,614.99 1,537.14	CO2 mulative (CC02e) 703.06 3,515.32 9,450.62 17,349.11 25,145.18 33,220.14 40,905.84 40,905.84
Non-Fores 100 33 33 33 95 95 95 Calculate baseline non-CD2 emission from lovest fires Calculate baseline non-CD2 emission from lovest fires 2 Reporting Interval Leakage Rate(2) Success Rate(2) Effective(3) 6 Stage 01: 2015 20 80 60 5 35 Stage 03: 2016-2020 10 90 90 Calculate ex ante met GHIS emission reductions	3 4 5 6 10 15 5 20 25 30 35 36 37 38 39 9 9 40 41 41 41 47 7 4	Project * No 1 5 10 15 20 25 30 C-Baseline C-Actual: C-Leakage: C-REDD: • PI Tab	Year 2006 2010 2015 2020 2025 2030 2035 2035 2035 2035 2035 2035 2035 2035 2035 2035 2035 204 205 205 205 205 205 205 205 205	C 10,548,95 70,548,95 70,548,95 69,484,08 69,350,17 68,451,10 70,899,66 67,481,88 are greenhouse greenhouse thropogenic thropogenic thropogenic	02 202 203 203 203 203 203 203 2	Non knuus (rc024) C 2,008,75 2,008,75 1,978,43 1,974,62 1,949,02 2,018,74 1,921,42 within the proje tC02e emission redu able 10 _ Table	-CO2 2,008.75 10,043.77 19,935.93 29,809.04 39,554.14 49,647.83 59,254.96 iect area; tCO2e ct area; tCO2e ct area; tCO2e ct area; tCO2e	CC tonuer (r0028) Cu 14,109.79 13,896.82 6,935.02 6,845.11 7,089.97 6,748.19 le to the RED Table 17 Tr	22 mulative (rc02a) Al 14,109.79 70,548.95 140,033.02 174,708.09 208,993.64 204,383.48 278,124.44 278,124.44	Non-C nucli (tCO24) Cun 401.75 395.69 197.46 194.90 201.87 192.14	02 subtrive (CO2a) 4 401.75 2,008.75 3,987.19 4,974.50 5,949.00 6,958.38 7,919.09	CO2 24,692.13 24,692.13 41,690.45 55,480.14 54,760.88 56,719.73 53,985.51	Carbon umulative (rc02e) / A 24,692.13 123,460.66 331,913.03 609,313.69 883,118.19 1,166,717.00 1,436,644.38	REDD Non-d nnual (±CO2e) Cut 703.06 703.06 1,137.06 1,579.70 1,559.22 1,614.99 1,537.14	CO2 T03.06 3,515.32 9,450.62 17,349.11 25,145.18 33,220.14 40,905.84

Some Organizations using Land Change Modeler

OSIRIS

REDD National Planning: OSIRIS impact of policy on REDD

Habitat and Biodiversity Modeler

Habitat and Biodiversity Modeler: Species Distribution Modeling with Maxent

Habitat and Biodiversity Modeler: Habitat Assessment

Habitat and Biodiversity Modeler: Gap Analysis

Landscape Assessment

IUCN Subset Tool

IDRISI 18.0 The Coral Edition <u>File</u> <u>Display</u> <u>GIS</u> Analysis <u>Modeling</u> <u>Image</u> Processing <u>Reformat</u> Data <u>Entry</u> <u>Window List</u> <u>Help</u> • 🕨 🔥 🚾 👽 🖗 👂 🖓 F 🗉 F 🗉 🕶 🔤 💉 🕼 💷 🕥 🖶 🗶 🦻 🥸 🌭 🐦 Initial 🛨 🔄 Habitat and Biodiversity Modeler : HBM ? 🛛 Species Biodiversity Landscape Analysis Planning sa_endemic_vu+_iucn_status alpha_endemic_vu+ SA: Frequency of Red List Endemic Mammals (VU/EN/CR/EW/EX) Subset IUCN Species Ranges ? IUCN species Red List CSV file : mammals_higher_taxanomy.csv IUCN species polygon file : mammals_i_1.vct IUCN species database (MDB) : mammals.mdb Species identifier field : L1 • Spatial subset option Bounding rectangle C Bounding polygon - Red List status subset options -🔲 Least Concern (LC) ✓ Critically Endangered (CR) Extinct in the Wild (EW) 🔲 Near Threatened (NT) 🔽 Vulnerable (VU) 🔽 Extinct (EX) 🔽 Endangered (EN) 🔲 Data Deficient (DD) Bounding rectangle Bounding polygon -Bounding polygon vector file : Min X : -83 MaxX: -30 -65 Min Y : Include species if 14 MaxY: ○ Range intersects ● Range is endemic Output prefix : sa_endemic_vu+ Run CLARK LABS MOORE M 🔍 🏹 🕅 y: •33.340345 RF 1: 35908133 c: 408 r: 946 x: -62.592444

Habitat and Biodiversity Modeler: Corridor Planning

Climate Change Adaptation Modeler

IDRISI 18.0 The Coral Edition	
File Display GIS Analysis Modeling Image Processing Reformat Data Entry Wind	
Limate Change Adaptation Modeler : CLAM	
Abbut CCAM Conside Scenario Impact Analysis Preprocess	
Image: Sensitivity (Delta 72k): Carbon cycle climate feedbacks Thermohaline circulation: Variable ▼ Aerosol forcing: Mid ▼ Vertical diffusion (K2): 2.3 crit/s Ice melt: Medurar ▼ Sensitivity (Delta 72k): 4.0 °C Model: User ▼	Emissions profile: AIBAIM Date: 24 Oct 2013 MID CONCENTRATION PROJECTION FOR CO2 (CO2-CLINATE FEEDBACK INCLUDED) MID CONCENTRATION PROJECTION FOR CH4 MID 1990 FORCINGS FOR 504 ARROSOL STRAT 020NE DEFLETION FEEDBACK INCLUDED FOR HALOCABONS NOT IN GAS. BMK, ENS CONSTANT AFTER 2100 CLIMATE MODEL SELECTED = MAGICC USER ICE MELT = MID NO EXTRA FORCING IN M/M**2 = 3.708 1990 DIRCT ARROSOL FORCING =400M/m**2 1990 DIRCT ARROSOL FORCING =400M/m**2 1990 DIRCT ARROSOL FORCING =400M/m**2 1990 EDGAS ARROSOL FORCING = .025M/m**2 1990 EDGAS ARROSOL FORCING = .025M/m**2 1990 FORSTL ORC CH = LACK C FORCING = .0244M/m**2 STATH HO FORS IN ORC CH = .444M/m**2
Utiput parameters 1990 Reference year for climate model output : 1990 Last year for climate model run : 2100 Interval for climate model : 5	NSIM = 1 : DELT(2XCO2) = 1.500DEGC FULL GLOBAL SO2 EMISSIONS IVARW SET AT 2 PERMANENT THC SHUTDOWN AT W = 2.80M/YR W = ZERO WHEN TEMPERATURE = 8.00degC
MAGICC output Temperature change C Sea level rise View report Temperature Change (°C) w.r.t 1990	ACTIVE W SCALED WITH GLOBAL-MEAN TEMPERATURE XXMS= 1.0 : XKLO= 1.0 HM= 60.0M : XK=2.3000CM**2/SEC PI= .2000 : INITIAL W= 4.00M/YR
4.5- 4.0- 3.5- User Input 3.0- User Input	DIFF/L SENSITIVITY CASE : RLO = 1.300 : XLAML = 1.4261 : XLAMO = 3.0976 1880-1990 CHANGES : GLOBAL DIEMP = .233 : DMSL = 4.198 DIMHL = .158 : DIMHO = .249 : DISHL = .209 : DISHO = .269 DIMHL = .211 : DISH = .266 : DIAMD = .175 : DIOCEAM = .260
25-20-	** TEMPERATURE AND SEA LEVEL CHANGES FROM 1990 ** (FIRST LINE GIVES 1765-1990 CHANGES : ALL VALUES ARE MID-YEAR TO MID-YEAR)
1.5-	DT2X = 1.50 : VARIABLE W
10- 0.5- 0.0- 0.5- 0.0- 0.5- 0.0- 0.5- 0.0- 0.5- 0.0- 0.5- 0.0- 0.5- 0.0- 0.5- 0.0- 0.5- 0.0-	LOW CLIMATE AND SEA LEVEL MODEL PARAMETERS YEAR DELTAQ TEQU TEMP EXEN GLAC GREENL ANTAR 2-XTRA MSLTOT TNH TSH WNH TO1990 1.112 450 .2748 2.71 1.96 .00 .00 4.67 .247 .302 3.96 1995 .1566 .063 .0526 .38 .08 -0.0108 .00 .36 .061 .044 3.55 2000 .3313 .134 .1075 .79 .160318 .00 .75 .125 .091 3.94 2005 .409 .195 .1544 1.23 .25 .0429 .00 1.15 .174 .134 3.93 2010 .6721 .272 .2091 1.71 .35064t29 .00 1.56 .243 .3.92 2015 .890 .360 .367 4.235 .561171 .00 2.62 .382 .304 3.91 2025 1.4185 .574 .4358 3.52 .721389 .00 3.22 .493 .379 3.89 2030 1.739 .703 .575 4.27 .9716 -1.09 .00 3.82 .614 .461 3.86 2033 1.739 .703 .575 4.27 .9716 -1.09 .00 3.82 .614 .461 3.86 2033 2.0550 .843 .6507 5.11 1.0020 -1.32 .00 4.61 .750 .551 3.86
CLARK LABS	Print Contents Save to File Copy to Clipboard Close

Ecosystem Services Modeler

IDRISI 18.0 The Coral Edition File Display GIS Analysis Modeling Image Processing Reformat Data Entry Window List Help ESM 💊 🚾 👽 👂 👂 🕞 ୮ 🗉 🥵 📭 💷 🕢 🗿 🖶 🗶 🔍 💖 🕍 🛬 🗩 🛤 🗫 🐦 - 🕨 🛨 📃 Ecosystem Services Modeler : ESM 2 3 Crop Pollination Habitat Quality and Rarity Habitat Risk Assessment Marine Aquaculture Offshore Wind Energy Recreation Hydropower Sediment Retention | Timber Harvest | Water Purification | Water Yield | Wave Energy About ESM Aesthetic Quality Carbon Storage and Sequestration Coastal Vulnerability Ecosystem Services Modeler mass_landcover_2006 Massachusetts Landcover in 2006 Unclassified Developed, High Intensity Developed, Medium Intensity Developed, Low Intensity Developed, Open Space Cultivated Crops Pasture/Hav Grassland/Herbaceous Deciduous Forest Evergreen Forest Mixed Forest Scrub/Shrub Palustrine Forested Wetland Palustrine Scrub/Shrub Wetland Palustrine Emergent Wetland Estuarine Forested Wetland Estuarine Scrub/Shrub Wetland Estuarine Emergent Wetland About the Ecosystem Services Modeler Unconsolidated Shore Bare Land The Ecosystem Service Modeler (ESM) is closely based on the InVEST toolkit developed by the Natural Capital Project - a partnership between Open Water Palustrine Aquatic Bed the Wood's Institute for the Environment at Stanford University, The Estuarine Aquatic Bed Nature Conservancy, the World Wildlife Fund and the Institute on the Environment at the University of Minnesota. In a few instances we have modified the InVEST models when the underlying procedures in the Clark Labs software constellation offer added value. In all cases, however, the fundamental spirit and algorithmic procedures developed by the Natural Capital Project have been maintained. While the InVEST documentation available on-line from the Natural Capital Project is equally relevant to the implementation in ESM, it should be noted that there may be version differences between the two implementations. Reference should primarily be made to the documentation in ESM and all technical inquiries regarding the use of this software should be directed to Clark Labs. This software implementation has been made possible through the generous support of the Gordon and Betty Moore Foundation and through a memorandum of understanding with the Natural Capital Project. We greatly appreciate the enthusiastic support of both organizations in the development of this project. CLARK LABS MOORE capit RF 1 : 1046687 c : 2420 r : 2391 x : 106476.175514 y : 889734.147486

Nutrient Retention

Habitat Quality and Rarity

Aquaculture

Multi-Objective Decision Modeler

Integrated system that simplifies the process of: Input data generation Analysis of ecosystem services Evaluation of impacts Decision Making

By having everything integrated there is no need of importing- exporting between different software.

All models are documented and referenced. Help, manual, tutorials, customer support

By having the tools within the software allows flexibility in data imputs. Moreover we have a macro modeler interface and an API for development of new tools.

Tools for resampling, upscaling and downscaling, and disaggregation of data.

Lower level and upper level tools allows the use by people with different skills.

Many modules for future scenarios (climate and land cover)

No open source, no free ware- LOW COST (we are non-profit)... BUT there is no need of other supporting software