Land Accounts

Workshop on Forest Accounting
Rio de Janeiro
25 September 2009

Gemma Van Halderen
Head, Environment and Agriculture Statistics
Australian Bureau of Statistics
The environment and national accounts

Gary Stoneham and Mark Eigenraam
Department of Sustainability and Environment, Victoria

Presented to User-Producer Workshop, Canberra, Australia, February 2009
Content

1. Emerging capability to create markets for environmental goods and services (EG&S)
 - Mechanism design
 - Implications for the environment

2. Implications for national accounts
 - SNA and SEEA
 - Flow accounts
 - Stock accounts

3. Information for national accounts
 - Catchment Management Framework (CMF)

4. Example accounts
1. Emerging capability

Mechanism design to create markets

Mechanism design (see Roth 2002)
- Design new institutions that mimic the efficiency properties of markets
 - Game theory (**Von Neumann, Morgenstern, Nash, Vickrey**)
 - Theory of incentives (Laffont)
 - Information economics (**Akelof, Stiglitz, Spence**)
 - Experimental economics (**Smith, Kahneman** and Plott)
 - Mechanism design (**Myerson, Maskin, Hurwicz**)

Applications of the mechanism design approach
- Mobile phone spectrum
 - Adverse selection
1. Emerging capability

Design and create markets

Markets
• Commodities
• Capital
• Inputs

Create new markets
• Mobile phone
• Legislation and regulation
• Airport landing slots
• Government programs
• Aquaculture sites
• Water
• Environment
1. Emerging capability

Victoria’s ESAS (ecoMarkets) program

Information from:
- Transactions (flow)
- Biophysical models (stock)

The public

NGOs

Consumers

Auction

Non-point-source

Tradeable permit

Emission Trading Scheme

Landholder

Markets

Offset markets

NVeX

Information from Transactions

& Surveys

Satellite Accounts - Environment

National Accounts
1. Emerging capability

In the real world

Site visit - visual assessment of habitat

Model - salinity, water quality, carbon, stream flow

Contract - payment to grow EG&S:
- construct fence
- exclude stock
- control weeds and pests
- plant more native species
- sell the carbon in CPRS market

What extra would I need to be paid to change land use?

What will other landholders ask for and do I have a good site?

Discover prices

Facilitate transactions in EG&S

Submit bid

Efficient allocation of land between commodities, carbon, EG&S
3. Implications for national accounts

Contribution to GDP (SNA)

Value added (contribution to GDP) equate to area ABC

Bid curve represents costs
3. Implications for national accounts

Contribution to GDP (SNA)

- **Production of EG&S**
 - Creates value (Revenue > Costs)
 - Adds to GDP

- **Environment production included in GDP estimates**
 - Revenue available from farm records
 - Costs included in farm records (materials etc.)

- **Markets for EG&S give a small increase in aggregate GDP**
 - Participation constraint

- **Attribution of GDP**
 - Able to attribute a component of GDP to environmental production
 - Able to estimate gross investment in environmental production
3. Implementation for environmental accounts - SEEA

Environmental asset accounts – satellite accounts

- Economic activity represented in SNA
 - Land Account (include land cover)
 - Terrestrial Ecosystems Account (EA3.1)
 - Aquatic Ecosystems Account (EA3.2)
 - Aquatic habitat account (EA3.2.1)
 - Surface water account (EA 3.2.2)
 - Groundwater Account (EA 3.2.3)
 - EnSym
 - Atmospheric Ecosystem Account – Bio-sequestration (EA3.3)

- Spatially referenced biophysical models
3. Implications for national accounts

Asset accounts – general format

- **Opening stock level – 1750... or now**
 - Increases in stock
 - Due to economic activity
 - Due to regular natural processes

 - Decreases in stock
 - Due to economic activity
 - Due to regular natural processes
 - Due to natural disasters (net increase)

- **Changes due to economic reclassification**

- **Closing stock levels (current)**

- **Changes in environmental quality**
 - Due to natural processes
 - Due to economic activity
Australian Land Use and Management (ALUM) Classification

- **Class 1 – Conservation and Natural Environments**
 Land is used primarily for conservation purposes, based on the maintenance of essentially natural ecosystems already present.

- **Class 2 – Production from Relatively Natural Environments**
 Land is used mainly for primary production, based on limited change to the native vegetation.

- **Class 3 – Production from Dryland Agriculture and Plantations**
 Land is used mainly for primary production, based on dryland farming systems.

- **Class 4 – Production from Irrigated Agriculture and Plantations**
 Land is used mainly for primary production, based on irrigated farming.

- **Class 5 – Intensive Uses**
 Land is subject to substantial modification, generally in association with closer residential settlement, commercial or industrial uses.

- **Class 6 – Water**
 Although primarily land cover types, water features are regarded as essential to the classification system.
Victorian Application of ALUM

- Class 1
 - 1.1.0 Nature conservation
 - 1.1.1 Strict Nature Conservation
 - 1.2.0 Managed recourse protection
 - 1.2.1 Biodiversity
 - Ecological Vegetation Classes
 - EVC (1 – 999)

- Additional classifications have been added to:
 - represent the value (preferences) within a class
 - estimate the ecological services provided
 - e.g. Rare and threatened, biodiversity conservation status, RAMSAR, National Significance (CFOC)
Catchment Management Framework

ALUM Classifications

Victorian EVC Classifications
CMF – Accounts Interface

ACCOUNTS CLASSIFICATION SUMMARY TABLE

<table>
<thead>
<tr>
<th>Input</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sown grasses</td>
<td>Agriculture</td>
</tr>
<tr>
<td>2. Grazing modified pastures</td>
<td>Agriculture</td>
</tr>
<tr>
<td>3. Irrigated vegetables & herbs</td>
<td>Agriculture</td>
</tr>
<tr>
<td>4. Irrigated seasonal horticulture</td>
<td>Agriculture</td>
</tr>
<tr>
<td>5. Cereals</td>
<td>Agriculture</td>
</tr>
<tr>
<td>6. Cropping</td>
<td>Agriculture</td>
</tr>
<tr>
<td>7. Irrigated vine fruits</td>
<td>Agriculture</td>
</tr>
<tr>
<td>8. Poultry</td>
<td>Agriculture</td>
</tr>
<tr>
<td>9. Irrigated modified pastures</td>
<td>Agriculture</td>
</tr>
<tr>
<td>10. Oleaginous fruits</td>
<td>Agriculture</td>
</tr>
<tr>
<td>11. Vegetables & herbs</td>
<td>Agriculture</td>
</tr>
<tr>
<td>12. Oil seeds & oleaginous fruit</td>
<td>Agriculture</td>
</tr>
<tr>
<td>13. Irrigated vegetables & herbs</td>
<td>Agriculture</td>
</tr>
<tr>
<td>14. Intensive horticulture</td>
<td>Agriculture</td>
</tr>
<tr>
<td>15. Shadehouses</td>
<td>Agriculture</td>
</tr>
<tr>
<td>16. Hay & silage</td>
<td>Agriculture</td>
</tr>
<tr>
<td>17. Legumes</td>
<td>Agriculture</td>
</tr>
<tr>
<td>18. Intensive animal production</td>
<td>Agriculture</td>
</tr>
<tr>
<td>19. Aquaculture</td>
<td>Agriculture</td>
</tr>
<tr>
<td>20. Irrigated cropping</td>
<td>Agriculture</td>
</tr>
<tr>
<td>21. Irrigated flowers & bulbs</td>
<td>Agriculture</td>
</tr>
</tbody>
</table>
Summary Land Account (ha)

<table>
<thead>
<tr>
<th>Pre-1750</th>
<th>Agriculture</th>
<th>Natural</th>
<th>Forestry</th>
<th>Urban Industrial</th>
<th>Water</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,328,241</td>
<td>219,367</td>
<td>167,159</td>
<td>101,221</td>
<td>5,345</td>
<td>1,328,241</td>
</tr>
<tr>
<td>2008</td>
<td>835,149</td>
<td>-83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corangamite – total area = 1.3m ha
- 17% of the land remains “natural”
- Predominant change is towards agriculture, making up 75%
 - Still contains some “natural” features
- Forestry – 15%
Current Biophysical Environmental Services

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Natural</th>
<th>Forestry</th>
<th>Urban Industrial</th>
<th>Water</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Stored</td>
<td>183,794</td>
<td>6,060,573</td>
<td>1,153,741</td>
<td>2,974</td>
<td>24,593</td>
<td>7,425,675</td>
</tr>
<tr>
<td>Carbon Sequestration</td>
<td>1,157</td>
<td>692</td>
<td>339</td>
<td>22</td>
<td>3</td>
<td>2,212</td>
</tr>
<tr>
<td>Drainage</td>
<td>132</td>
<td>63</td>
<td>33</td>
<td>19</td>
<td>1</td>
<td>248</td>
</tr>
<tr>
<td>Dry Matter</td>
<td>266,532</td>
<td>13,162,256</td>
<td>2,489,527</td>
<td>5,457</td>
<td>53,417</td>
<td>15,977,189</td>
</tr>
<tr>
<td>Pan Evaporation</td>
<td>925</td>
<td>237</td>
<td>174</td>
<td>112</td>
<td>6</td>
<td>1,454</td>
</tr>
<tr>
<td>Transpiration</td>
<td>255</td>
<td>90</td>
<td>127</td>
<td>9</td>
<td>2</td>
<td>483</td>
</tr>
<tr>
<td>Surf. Runoff</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Erosion (t/h)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rainfall (mm)</td>
<td>580</td>
<td>182</td>
<td>174</td>
<td>71</td>
<td>4</td>
<td>1,011</td>
</tr>
<tr>
<td>Subsurface Lat.</td>
<td>40</td>
<td>25</td>
<td>14</td>
<td>6</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td>Recharge</td>
<td>92</td>
<td>38</td>
<td>19</td>
<td>13</td>
<td>1</td>
<td>162</td>
</tr>
<tr>
<td>Evaporation</td>
<td>187</td>
<td>27</td>
<td>11</td>
<td>38</td>
<td>1</td>
<td>264</td>
</tr>
</tbody>
</table>
Carbon Stored (t/m) - Biosequestered

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Natural</th>
<th>Forestry</th>
<th>Urban / Industrial</th>
<th>Water</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1750</td>
<td>-</td>
<td>69,079,663</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>69,079,663</td>
</tr>
<tr>
<td>2008</td>
<td>183,794</td>
<td>6,060,573</td>
<td>1,153,741</td>
<td>2,974</td>
<td>24,593</td>
<td>7,425,675</td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td>-91</td>
<td></td>
<td></td>
<td></td>
<td>-89</td>
</tr>
</tbody>
</table>

- 89% of the carbon that was stored in the landscape has been released since European settlement
 - to the atmosphere
 - stored in buildings etc
- The largest store is still in the natural systems (81%)
Runoff (ML/yr)

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Natural</th>
<th>Forestry</th>
<th>Urban / Industrial</th>
<th>Water</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1750</td>
<td></td>
<td>5,209,596</td>
<td></td>
<td></td>
<td></td>
<td>5,209,596</td>
</tr>
<tr>
<td>2008</td>
<td>6,413,089</td>
<td>1,280,301</td>
<td>1,805,200</td>
<td>4,028,518</td>
<td>37,836</td>
<td>13,564,944</td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td>-75</td>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
</tbody>
</table>

- 160% increase in runoff to streams
 - A significant movement away from natural flow regimes
- Re-establishing the landscape in key areas can contribute to returning flows to “natural” regimes (EcoTender in Victoria)
- Flood and asset risks can also benefit from strategic land use change
Recharge (ML/y)

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Natural</th>
<th>Forestry</th>
<th>Urban / Industrial</th>
<th>Water</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1750</td>
<td></td>
<td>173,061,320</td>
<td></td>
<td></td>
<td></td>
<td>173,061,320</td>
</tr>
<tr>
<td>2008</td>
<td>91,550,860</td>
<td>37,554,013</td>
<td>19,333,963</td>
<td>12,754,149</td>
<td>906,292</td>
<td>162,099,277</td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td>-78</td>
<td></td>
<td></td>
<td></td>
<td>-6</td>
</tr>
</tbody>
</table>

- 6% decrease in recharge (to groundwater)
 - A small overall change
 - A substantial change in the area it is occurring
 - Saline land increases as a result of increasing recharge in specific areas!
 - Agriculture is located in high (relatively) rainfall areas and thus increasing net recharge to groundwater – more saline land area
Habitat Hectare
(Terrestrial biodiversity metric)

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Natural</th>
<th>Forestry</th>
<th>Urban/Industrial</th>
<th>Water</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1750</td>
<td></td>
<td>1,328,241</td>
<td></td>
<td></td>
<td></td>
<td>1,328,241</td>
</tr>
<tr>
<td>2008</td>
<td>134,173</td>
<td>116,922</td>
<td>96,451</td>
<td>26,144</td>
<td>2,265</td>
<td>375,954</td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td>-91</td>
<td></td>
<td></td>
<td></td>
<td>-72</td>
</tr>
</tbody>
</table>

- 72% decrease habitat hectare
 - Significant loss in habitat services for flora and fauna
- **NOTE**: agriculture and forestry still provide some services
 - Victorian EcoTender pays landholders to manage natural systems on their land and thus increase habitats services for flora and fauna
Summary Land Account (ha)
(Annual reporting of transactions)

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Natural</th>
<th>Forestry</th>
<th>Urban / Industrial</th>
<th>Water</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>835,149</td>
<td>219,367</td>
<td>167,159</td>
<td>101,221</td>
<td>5,345</td>
<td>1,328,241</td>
</tr>
<tr>
<td>Changes due to transactions</td>
<td>-330</td>
<td>330</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Additions to stock levels</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deductions from stock levels</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Others changes to stock levels</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2009</td>
<td>834,819</td>
<td>219,697</td>
<td>167,159</td>
<td>101,221</td>
<td>5,345</td>
<td>1,328,241</td>
</tr>
<tr>
<td>% Change</td>
<td>-0.04</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- $1.2m EcoTender in Corangamite
- 330 ha of land is now defined as “natural”
- Remains in private ownership and under private management
- *EcoTender transactions between the Victorian government and landholders add value to the agricultural sector by producing EG&S*
Habitat Hectare – biodiversity
(Annual reporting of transactions)

<table>
<thead>
<tr>
<th>Area (ha)</th>
<th>Agriculture</th>
<th>Natural</th>
<th>Forestry</th>
<th>Urban / Industrial</th>
<th>Water</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>134,173</td>
<td>116,922</td>
<td>96,451</td>
<td>26,144</td>
<td>2,265</td>
<td>375,954</td>
</tr>
<tr>
<td>Changes due to transactions</td>
<td>4,950</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Additions to stock levels</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deductions from stock levels</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Others changes to stock levels</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2009</td>
<td>139,123</td>
<td>116,922</td>
<td>96,451</td>
<td>26,144</td>
<td>2,265</td>
<td>380,904</td>
</tr>
<tr>
<td>% Change</td>
<td>3.69</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.32</td>
</tr>
</tbody>
</table>

- 1.3% increase in habitat services for flora and fauna
 - *All these services are being sourced from “agricultural” land*
Status of Victorian Accounts project
(Next twelve months)

- Ten catchment management areas covering all of Victoria
- Can geographically report for any zones / areas
 - local council, sub catchments, river basins etc
- Can geo-reference all transactions involving the environment
 - Can spatially present locations of all transactions
- Develop alignment between ALUM classification system and Victorian land use mapping
 - Process for inclusion of Ecological Vegetation Classes
- Provide the Environmental Accounts Reporting System (EARS) to NRM investors for reporting to the commonwealth and state government
National application

- Catchment Management Framework (CMF)
 - Is applicable nationally
 - Landuse data sets
 - Base data sets – status
 - Soil mapping, DEM
 - Native vegetation classifications

- Potential to report nationally consistent set of environmental accounts and geo-referenced transactions
5. Some conclusions

Summary points

1. Can now create markets where missing
 - Mechanism design
 - Significant investment in quantitative tools that connect science with points in space

2. Markets for EG&S will eventually be attractive to government
 - Superior economic efficiency properties (+30%)
 - Design to mimic markets

3. Increasing use of markets for EG&S
 - Water markets
 - Emission Trading
 - Procurement auctions (Victoria)
 - Offset markets (eBX)

4. Transactions in EG&S reveal price and define value attributes

5. Implications for national accounts:
 - Environmental production recognised in Flow accounts (transactions occur) in SNA
 - Environmental stocks included in Asset accounts (models developed) using SEEA
Thank you