

THE IEEM PLATFORM AND ITS MOTIVATION

- Economy-wide computable general equilibrium (CGE) models are widely used for public policy and investment analysis.
- Kenneth J. Arrow, Nobel laureate in economics, affirmed, "...in all cases where the repercussions of proposed policies are widespread, there is no real alternative to CGE" (Arrow, 2005, p.13).
- Ministries of Finance/Central Banks/Planning Depts, IDB et al. undertake or purchase CGE analysis.
- <u>Little consideration of natural capital and ecosystem services</u>.

THE IEEM PLATFORM VALUE-ADDED

1. Integrates <u>SEEA (System of Environmental-Economic Accounting CF)</u> data in dynamic economy-wide framework.

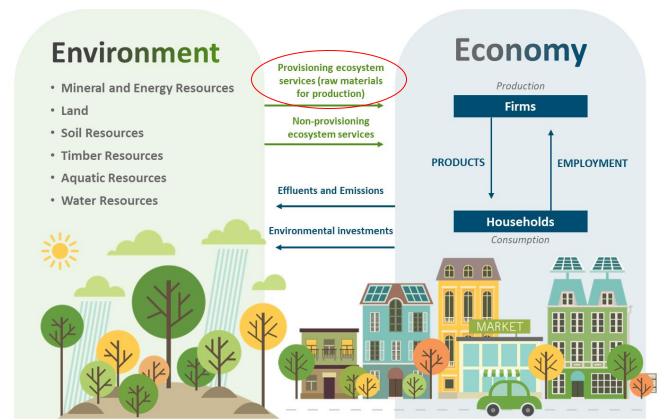
NATURAL CAPITAL

Natural resource modules with policy relevant features.

MANUFACTURED

CAPITAL

3. Standard economic indicators (Min Fin), and; natural capital and wealth metrics.



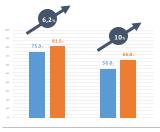
HUMAN CAPITAL

4. IEEM + ESM: spatial land use/ecosystem service impacts.

ENVIRONMENT - ECONOMY INTERACTIONS

IEEM Integrated Economic-Environmental Modeling

GUATEMALA APPLICATION TO SDG 2: ZERO HUNGER AND SDG 6: WATER AND SANITATION



Increase of irrigated area:
112,798 ha.

Investment: US\$6.045 million

Increase water and sanitation coverage by 6.2% and 10% to 81.5% and 66%, respectively

Investment: US\$1.607 billion

Time horizon: **5 years**

SDG

SDG 2, Target 2.3

Time horizon: **13 years**

SDG

SDG 6, Target 6.1 and 6.2

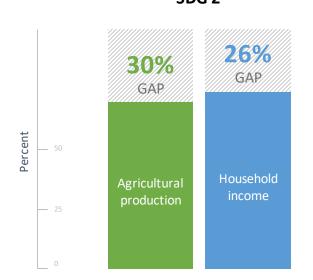
SDG 15: LIFE ON LAND

Increase in forest management and conservation: 81,200 ha.

Investment: US\$8.35 million

Time horizon: **6 years**

SDG


SDG 15, Target 15.2

SDG 2

ECONOMIC IMPACTS

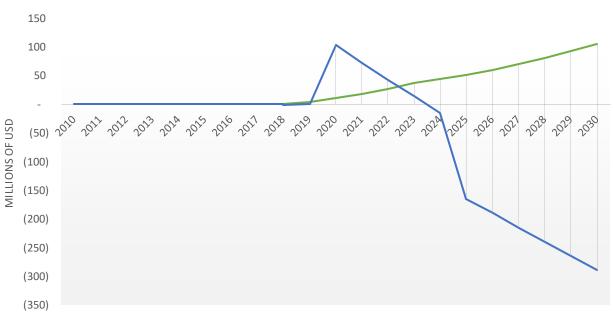
Difference from base in 2035 in millions of USD.

	SDG 2 AND 6	SDG 15
GDP	261	71
Private consumption	212	61
Private fixed investment	39	1
Exports	99	217
Imports	90	208

ENVIRONMENTAL IMPACTS

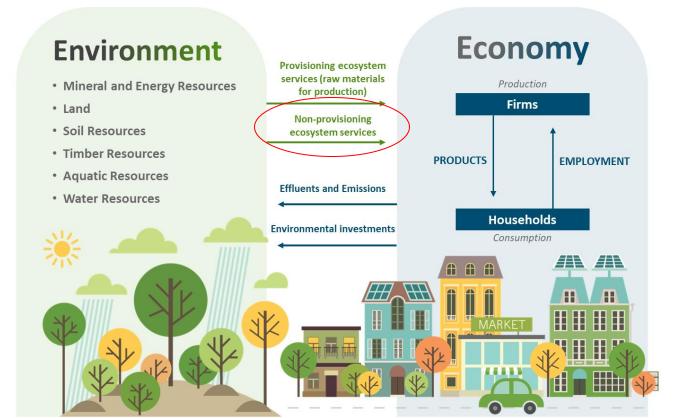
SDG 15 increased total greenhouse gas emissions by **121,584 tons of CO₂** while SDGs 2 and 6 reduced emissions by **368 tons of CO₂** by 2035.

SDG 15 reduced water consumption per capita in agriculture by **1,971 m³** while SDGs 2 and 6 increased consumption by **5,164 m³** by 2035.



SDG 15 reduced deforestation by **35,391** ha by 2035.


WHY GREEN INDICATORS ARE NOT ENOUGH

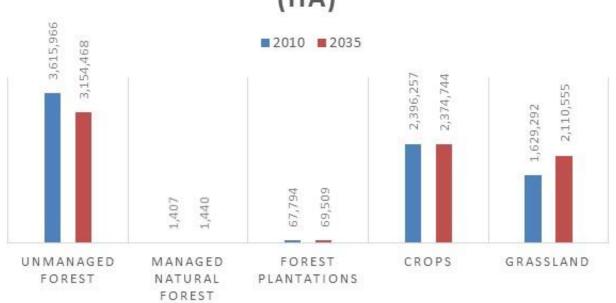


IEEM + ESM Proof of concept

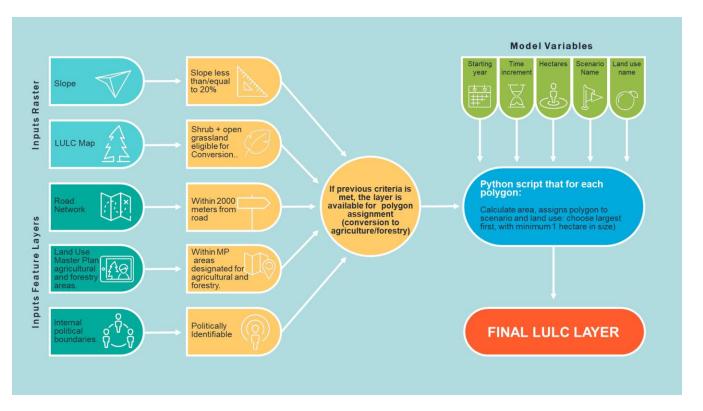
ENVIRONMENT - ECONOMY INTERACTIONS

Policy question: SDGs

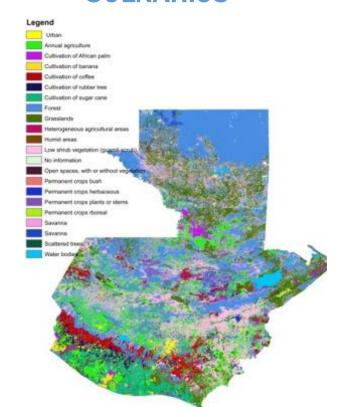
Develop and calibrate IEEM

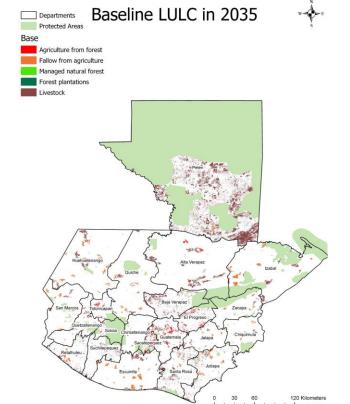

Run BASE + scenarios in IEEM

Develop LULC Model, LULC Map Develop and run ES models


STEP 1: RUN IEEM TO GENERATE BASELINE PROJECTION

IEEM BASE LAND USE PROJECTIONS (HA)




STEP 2: DEVELOP LULC CHANGE MODEL

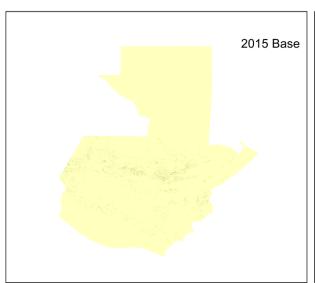
IEEM Integrated Economic-Environmental Modeling

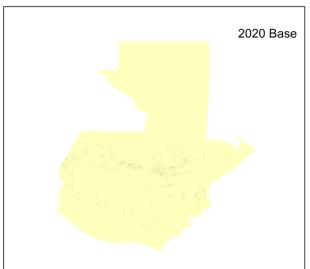
STEP 3: MAP LULC CHANGE PROJECTIONS BASE AND SCENARIOS

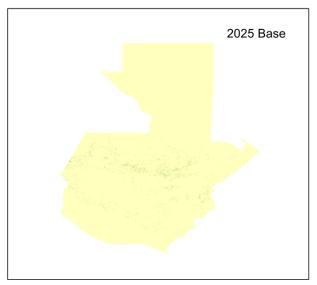
STEP 4: PARAMETERIZE AND RUN ES MODELS

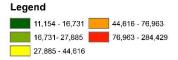
InVEST Sediment Delivery Ratio Model

 $USLE_i = R_i \cdot K_i \cdot LS_i \cdot C_i \cdot P_i$


Where:


- R_i is rainfall erosivity (units: MJ·mm(ha·hr)⁻¹)MJ·mm(ha·hr)⁻¹,
- K_i is soil erodibility
 (units: ton·ha·hr(MJ·ha·mm)⁻¹ton·ha·hr(MJ·ha·mm)⁻¹),
- LS_i is a slope length-gradient factor (unitless)
- C_i is a crop-management factor (unitless), and;
- P_i is a support practice factor.




STEP 5: GENERATE ESM RESULTS, SCENARIO MINUS BASE

Severe Erosion: USLE > 11 tons/ha/yr.

STEP 6: RELATE ES CHANGE TO IEEM VARIABLES

- Considering erosion mitigation ES, one potential impact pathway of changes in ES supply is through agricultural productivity (there are others!).
- Quantitatively describe pathway: 8% productivity loss for severe erosion (Panagos et al., 2018).

$$LPL_d = \frac{SER_d}{TAA_d} \cdot 0.04$$

Where:

- LPL_d is the land productivity loss by subscript d
 Department;
- SER_d is the agricultural land area (hectares) subject to severe erosion of >11t/ha/year in each Department, and;
- TAA_d is the total agricultural area, both crop and livestock, by Department.

TABLE 2 Literature review of studies estimating the agricultural productivity loss due to soil erosion by water

Reference	Estimation of crop yield loss due to soil erosion	Comments on estimation method Experiments in the United States		
Lyles (1975)	Productivity loss ~6% per 2.5 cm of soil loss			
Pierce, Larson, Dowdy, and Graham (1983)	2-4% productivity loss in case of severe erosion (>25 t ha ⁻¹ year ⁻¹)	U.S. croplands; NRI survey		
Battiston, Miller, and Shelton (1987)	8% productivity loss due to soil erosion	Corn yield experiments in Ontario		
Magrath and Arens (1989)	0–12% annual productivity loss in case of severe erosion	Analysis of three comparable studies in Java, Indonesia		
Schumacher, Lindstrom, Mokma, and Nelson (1994)	8% yield reduction in cornfields with severe erosion	North Central United States experiments		
Pimentel et al. (1995)	Severe soil erosion by water (rates of higher than 17 t ha ⁻¹ year ⁻¹) can cause a crop productivity loss of 8% annually.	Review article		
Crosson (1995)	Productivity loss to only 0.4% per year (8% productivity loss after 20 years).	Review study based on Pimentel et al. (1995) article		
Lal (1995)	Yield reductions due to severe erosion may range from 2% to 40%, with a mean of 8.2% for the continent.	A review of available data in African plots		
Oyedele and Aina (1998)	Maize yield reduction of 10-17% on severely eroded	Plot experiments in Africa		
Van den Born, de Haan, Pearce, and Howarth (2000)	9% productivity loss for maize and other grains under high erosion risk	European Union 15 countries based on ICONA 1991		
De La Rosa, Moreno, Mayol, and Bonsón (2000)	12% reduction on crop productivity will be reached in 2100 with erosion rates of 16 t ha ⁻¹ year ⁻¹ .	Based on results in Andalusia region (Spain)		
Bakker, Govers, and Rounsevell (2004)	2.7% yield decrease per decade according to findings in de-surfacing experiments; yield reductions due to soil erosion are around 4.3% per 10 cm of soil lost.	Based on data analysis (field data collection) in Europe		
den Biggelaar, Lal, Wiebe, and Breneman (2001)	Crop productivity based on past plot studies for different crops in all continents, showing negligible effects for erosion rates <2 t ha ⁻¹ year ⁻¹ .	Analysis of soil erosion- productivity experiments		
Bakker, Govers, Jones, and Rounsevell (2007)	4.9% yield loss in case of 10 cm soil erosion	Based on available water capacity analysis		
Montgomery (2007)	Soil loss rates less than 12 t ha ⁻¹ year ⁻¹ as tolerable for maintain the crop productivity	Based on the U.S. Department of Agriculture values		
Larney, Janzen, Olson, and Olson (2009)	Grain yields may fall by 2.1% annually per cm of soil removal	Experiments in Alberta, Canada		

Note. NRI = National Resources Inventory.

Source: Panagos et al., 2018.

STEP 7: FEED ESM IMPACT BACK TO IEEM AND ITERATE

-	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
DEPARTMENT	LPL_d (%)										
Guatemala	0.0398680	0.0406616	0.0414551	0.0422487	0.0430423	0.043836	0.044512	0.045188	0.045864	0.046540	0.0472155
El Progreso	0.2267094	0.2266053	0.2265012	0.2263971	0.2262930	0.226189	0.229351	0.232512	0.235674	0.238836	0.2419978
Sacatepequez	0.0717616	0.0778290	0.0838964	0.0899637	0.0960311	0.102098	0.103986	0.105874	0.107761	0.109649	0.1115361
Chimaltenango	0.0345597	0.0345598	0.0345599	0.0345600	0.0345601	0.034560	0.034583	0.034605	0.034628	0.034651	0.0346731
Escuintla	0.0035007	0.0035008	0.0035010	0.0035011	0.0035013	0.003501	0.003501	0.003501	0.003501	0.003501	0.0035014
Santa Rosa	0.0275717	0.0274066	0.0272415	0.0270764	0.0269112	0.026746	0.026648	0.026550	0.026451	0.026353	0.0262550
Solola	0.1653336	0.1667672	0.1682008	0.1696344	0.1710680	0.172502	0.173747	0.174993	0.176239	0.177484	0.1787298
Totonicapan	0.0099412	0.0102026	0.0104640	0.0107254	0.0109867	0.011248	0.011248	0.011248	0.011248	0.011248	0.0112481
Quetzaltenango	0.0308880	0.0308037	0.0307195	0.0306352	0.0305509	0.030467	0.030467	0.030467	0.030467	0.030467	0.0304666
Suchitepequez	0.0090420	0.0090216	0.0090012	0.0089808	0.0089604	0.008940	0.008940	0.008940	0.008940	0.008940	0.0089399
Retalhuleu	0.0012203	0.0012199	0.0012194	0.0012189	0.0012184	0.001218	0.001218	0.001218	0.001218	0.001218	0.0012180
San Marcos	0.0709679	0.0705838	0.0701997	0.0698155	0.0694314	0.069047	0.068866	0.068684	0.068503	0.068321	0.0681399
Huehuetenango	0.2205299	0.2194926	0.2184552	0.2174179	0.2163806	0.215343	0.214260	0.213177	0.212094	0.211011	0.2099280
Quiche	0.2488614	0.2483546	0.2478479	0.2473412	0.2468344	0.246328	0.246319	0.246311	0.246303	0.246294	0.2462861
Baja Verapaz	0.2291479	0.2267817	0.2244156	0.2220494	0.2196833	0.217317	0.217297	0.217277	0.217257	0.217237	0.2172176
Alta Verapaz	0.2588638	0.2579392	0.2570147	0.2560901	0.2551656	0.254241	0.254449	0.254657	0.254865	0.255073	0.2552806
Peten	0.0011371	0.0011235	0.0011098	0.0010962	0.0010826	0.001069	0.001069	0.001069	0.001069	0.001069	0.0010689
Izabal	0.0456172	0.0451324	0.0446476	0.0441628	0.0436779	0.043193	0.043080	0.042967	0.042853	0.042740	0.0426266
Zacapa	0.1405783	0.1386212	0.1366640	0.1347069	0.1327497	0.130793	0.130642	0.130490	0.130339	0.130188	0.1300373
Chiquimula	0.1700176	0.1691836	0.1683496	0.1675155	0.1666815	0.165847	0.165759	0.165671	0.165583	0.165495	0.1654066
Jalapa	0.0715681	0.0714808	0.0713935	0.0713062	0.0712189	0.071132	0.070538	0.069944	0.069351	0.068757	0.0681635
Jutiapa	0.0156843	0.0155951	0.0155059	0.0154167	0.0153275	0.015238	0.015166	0.015094	0.015022	0.014950	0.0148777

INTERACTION IEEM+ESM

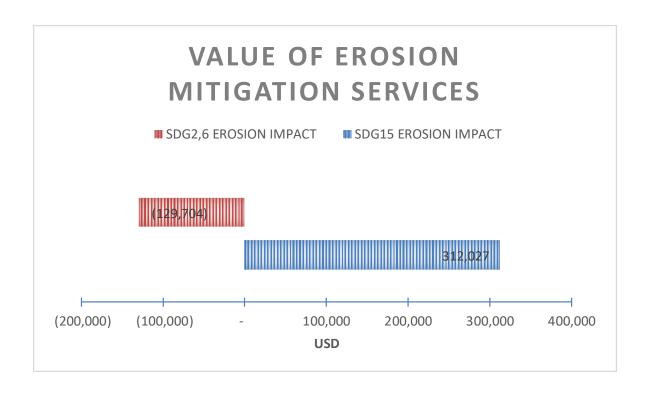
IEEM 2015-2020

- LULC+ESM 2015-2020;
- Projection 2021-2025

IEEM 2021-2025

- LULC+ESM 2020-2025;
- Projection 2026-2030

IEEM 2026-2030


- LULC+ESM 2025-2030;
- Projection 2031-2035

IEEM 2031-2035

RECALCULATE INDICATORS

FINAL THOUGHTS

Integrate the IEEM+ESM work flow (LULC+ESM).

Consider a range of magnitudes for erosion impacts and shocks.

 Other ecosystem services or goods: soil fertility, potable water, crop pollination.

FOR MORE INFORMATION ON IEEM:

Onil Banerjee onilb@iadb.org Tel: 1-202-623-3382

IEEM AND NATURAL CAPITAL ACCOUNTING

IEEM VIDEO

English: https://vimeo.com/240348050 Spanish: https://vimeo.com/243498201