

Multi-Regional IO Tables: Applications and Construction Challenges

Project Manager EXIOPOL and CREEA UNCEEA meeting New York, 16 June 2011 Arnold.tukker@tno.nl

Presentation Elements

- Multi-regional EE SUT and IOT
 - > What is it?
 - > What is the policy relevance ?
 - > What are the main characteristics of ongoing projects?
 - > How can research help NSIs and UNCEEA and in reverse?
- My own background
 - Manager at TNO, a large not for profit research institute in NL
 - Professor of Sustainable Innovation, Industrial Ecology Program, NTNU, Trondheim, Norway
 - Leader of EU funded MR EE IO projects of EXIOPOL and CREEA (total 6 Mio Euro, 10-15 partners)

Backgrounds on SUT/IOT

	Products	Industries			
Products		Use	Final use	Exports	Use of products
Industries	Make / Supply				Output of industries
	Imports cif	Value added			
	Supply of products	Input of industries			
		Extensions: - Primary Natural Resource input - Emissions outp - etc.			

- > EE SUT for a single country
 - > Economic Supply and Use
 - By industry: emissions and primary resource use
- > Can provide you
 - Per final use category: value added by industry
 - With impact per Euro per industry known: life cycle impacts per final use category
- Advantages
 - > Inherently complete
 - > Inherently consistent

Relations between SUT and IOT

Figure courtesy of Jose Rueda Cantuche, EU DG JRC IPTS, Sevilla, Spain

Backgrounds on MR SUT/IOT

Country SUT/IOT do not provide insight in 'pollution embodied in trade'

Ideal solution: MR EE SUT/IOT

- Country SUT/IOT including
 value added and final demand
 (red)
- Import and export trade matrices for intermediate and final demand (green)
- Exensions: emissions, energy, materials (grey)

		Y *,A	Y _{*,B}	Y _{*,C}	Y _{*,D}	q			
	Z _{A,A}	Z _{A,B}	Z _{A,C}	Z _{A,D}	Y _{A,A}	Y _{A,B}	Y _{A,C}	Y _{A,D}	q _A
Products	Z _{B,A}	Z _{B,B}	Z _{B,C}	Z _{B,D}	Y _{B,A}	Y _{B,B}	Y _{B,C}	Y _{B,D}	q _D
	Z _{C,A}	Z _{C,B}	Z _{C,C}	Z _{C,D}	Y _{C,A}	Y _{C,B}	Y _{C,C}	Y _{C,D}	q _c
	Z _{D,A}	Z _{D,B}	Z _{D,C}	Z _{D,D}	Y _{D,A}	Y _{D,B}	Y _{D,C}	Y _{D,D}	q _D
w	W _A	W _B	W _c	W _D	,				
g	g _A	g _B	gc	g _D					
L K	Capital _A	C _B	C _C	C _D					
nviron Ext C 8	Labor _A	L _B	L _C	L _D					
	NAMEA _A	NAMEA _B	NAMEA _C	NAMEA _D					
	Agric _A	Agric _B	Agric _c	Agric _D					
	Energy _A	Energy _B	Energy _c	Energy _D]				
	Metal _A	Metal _B	Metal _c	Metal _D					
<u>س</u>	Mineral _A	Mineral _B	Mineral _c	Mineral _D]				
	Land _A	Land _B	Land _c	Land _D					

Relevance of EE SUT and IOT

- EE SUT are very versatile and powerful analytical tools
- EU EIPRO (480 sector EE IOT)
 - Priority setting of products
 - Proved that food, mobility and housing were prio's
- EU Diet change
 - Change to healthy diets by changing demand vector
 - Showed rebounds by linking EE IOT to the CAPRI model

Tukker (ed., 2006), Journal Industrial Ecology 10: 3

	Aggregated environmental impacts (%)						
	Scenario O: Status quo	Scenario 1: Recommendations	Scenario 2: Recommendations including red meat reduction	Scenario 3: Mediterranean			
Sub-scenario 'All'							
Food	27	27	25	25			
Non-food	73	73	73	73			
Total	100	100	98	98			
Sub-scenario ' All + first order'							
Food	27	27	25	25			
Non-food	73	73	74	73			
Total	100	100	99	98			
Sub-scenario 'All + first and second orders'	100	100	99	99			

NO innovation for life

Relevance of imports - MR EE SUT and IOT

- > Peters et al., PNAS 2010:
 - > Global CO2 emissions (black)
 - Transfer from Annex B to non
 Annex B (yellow)
 - Similar work of Ahmad and Wyckoff, 2003, Davis and Caldeira, 2010
- > Giljum et al. (in press)
 - Focuses on materials
 - Gives net materials imports and exports in trade

innovation for life

Relevance of MR EE SUT/IOT instead of DTA

- Results of Eurostat EU 27 EE SUT/IOT with 'Domestic technology assumption'
- EU is seemingly carbon neutral in trade....
- ...where other studies
 show carbon in imports
 is a factor 2-3 higher as
 in exports....

http://epp.eurostat.ec.europa.eu/portal/page/portal/environmental_accounts/documents/eeSUIOT%20TechDoc%20final%20060411.pdf

TNO innovation for life

Major attempts in creating (Global) MR EE SUT/IOT

Project name	Funding	Countries	Туре	Detail	Time	Extensions	Approach
				(ixp)			
IDE JETRO	Japan	Asia	MR		2000,	-	Harmonize IOT; Link via trade; move
(Inomata)		Pacific (10)	IOT		2004		discrepancies to RoW
GTAP (Hertel)	Subscrip-	World (113)	MR	58x58	2000,	10 (GWP)	Harmonize trade; use IOT to link trade sets;
	tion		IOT		2004		relative crude IOT estimates
WIOD	EU FP7	World (40)	MR	30x60	1995?-	20+	Harmonize SUT; Link via trade; problems with
(Dietzenbacher,			SUT		2000-		discrepancies
RUG)					2006		
EXIOPOL/	EU	World (43)	MR	129x129	2000,	30 emissions, 60	Create SUT bp; Split Use_dom and Use_imp;
CREEA (Tukker,	FP6/7		SUT		2007	IEA energy	Detail and Harmonize SUT; Use trade shares to
TNO & NTNU))						carriers; water,	estimate implicit exports; confront with exports in
						land, 80 resources	SUT, RAS out differences, add extensions
AISHA/	Austral-	World,	MR	t.b.d	1990-	t.b.d.	Create initial estimate; Gather all data available;
EORA (Lenzen,	ian NSF	t.b.d.	SUT	(>150?)	2006?		apply in original format; Formulate constraints;
Un. Syndney)		(200?)					Detect & judge inconsistencies; Let routine
							calculate Global MR SUT/IOT
Eurostat	Eurostat	EU 27	SUT	59x59	1995-	10 (GWP)	Create SUT bp, Split intra and extra EU trade,
(Remond-		aggregate			2007		aggregate to EU27 totals, remove intra EU
Tiedrez, Moll)							imports / export differences to RoW, add
							extensions

Note: WIOD seems only project that develops current and constant price tables

What did EXIOPOL produce

- WP III.4.b: Database with five 'big blocks'; flexible set up with regard to sectors, products, countries, etc., import/export and aggregation routines
 - Block 0: 'Fuzzy front end' with transformations in WS III.2 and III.3
 - > = Import routine SUT, EE, trade shares, consistency checks, error reporting
 - > Block 1: Harmonized EE SUT by country, trade shares, rRoW initial structure
 - > = Trade link routine (20 minutes)
 - Block 2: Trade linked MR EE SÚT,
 - > = SUT to IOT transformation routine, pxp and ixi, one technology assumption)
 - Block 3: MR EE IOT (pxp, ixi) Inverse, aggregation routines, links to models etc.
 - = output to CMLCLA indicator program (EF, TMR, LCIA, Externalities)
 - ...a very flexible engine capable of dealing very quick with updates, or even fully new data sets and formats

What EXIOPOL did produce (2)

- 43 harmonized country SUT plus a small RoW
 - > 130 sectors (detail in agri, energy, minerals, mining, etc.)
 - > detailed Value added blocks
- Harmonized data on trade shares by country by sector (products, services)
- Large set of environmental extensions including physical SUT
 - Physical energy SUT (transformed IEA database, 60 carriers by 130 sectors) plus energy related emissions by carrier (30-40 substances)
 - Non-energy emissions (30 substances)
 - Primary resource extraction by 130 sectors (80 resources)
 - > Land use, water use,
- External cost values per emission per sector and country (including some spatial differentation, e.g. using default stack hights per sector)
- Data set on factor constraints (mainly: 3 classes of labor, land, water) and estimates of resource rents and royalties.

How EXIOPOL did produce its data set - SUT

- > Working with SUT as core (// GTAP, IDE)
 - Trade and FD is in products
 - > Emissions and resource extractions are by Industry
- Production routine
 - > Gather and create balanced SUT in bp in original sector format
 - EU: Eurostat SUT with S in bp, U in pp, few give valuation layers > reverse engineer Ubp from IOT and Sbp
 - > Non EU: often IOT, heroic assumption of diagonal S
 - Detail
 - > Map SUT bp on EXIOPOL classification
 - > Úse auxiliary information and optimisation routine to create detail
 - > AgriSAMS for food and agriculture
 - IEA database, information on material extraction, LCA co-efficients, SUT/IOT othe countries for estimated co-efficients

How EXIOPOL created its data set - EE

- Resources: allocation SERI (FAO, USGS, etc.) database to extracting sectors
- Emissions
 - Allocation of EIA database to sectors + emission factors (IPCC, CLRTAP, etc.)
 - > Other activity variables + emission factors
- > Land, Water: mainly FAOSTAT plus allocation

How EXIOPOL created its data set – Trade links

- > Use bp is separated in Use dom and Use imp
- Use imp is further allocated to country of origin with trade shares (harmonized UN COMTRADE by Feenstra et al.)
- When we do so for all countries, we get an 'implicit export' by country that in theory should match export vector in Use table
- > It does not due to
 - Valuation differences (cif versus fob)
 - > Statistical differences / error
- > We match this by
 - > Using Exports in SUT as constraint;
 - Rescaling so that total imports = total exports at global level
 - GRAS is applied to the bilateral Import Use tables to get a balanced system

Plans in CREEA (2011-2014)

- > FP7 CREEA (Compiling and Refining Economic Environmental Accounts
 - > EXIOPOL team with notable additions CBS (NL) and SCB (Sweden)
 - Does practical data refining tests and compilation related to SEEA 2012
 - > Water*
 - Materials and waste*
 - > Kyoto issues land use change, carbon trading, taxes*
 - Forests
 - > Will also use outcomes of * to update EXIOBASE,
 - > Additional physical SUT and waste accounts
 - Improved water, land use change and carbon trading accounts
 - > Next to creating a more recent base year
- We have funds reserved for intensive collaboration with formal circles (e.g. OECD, UNCEEA, UNEP ????)

Longer term roadmap ideas for EE SUT/IOT

- > Further harmonization of SUT/IOT in more detail
- > Expanding number of countries covered
- > Integration with physical data to P-SUT (e.g. with FAO and IEA data)
- > Harmonizing trade data sets/shares (both economic as physical)
- Integration of Life cycle inventory data (is SUT/IOT by single process)
- > Integration of spatially explicit information for land and water use
- > Inclusion of monetary and physical capital stocks

Potential for improvements and collaboration

- Research groups in fact make MR SUT/IOT rather than NSIs or UN
- My main suggestions to official data gatherers like NSIs, UN, FAO, IEA:
 SUT & IOT
 - > Publish valuation layers particularly EU must have them....
 - > Please use harmonized sector classifications really!
 - > Trade
 - > Solve 'mirror statistics puzzle' in UN COMTRADE
 - > Start work on service trade sets.....
 - Physical data (energy IEA; agro-food: FAO)
 - > Please use CPC for classifying products
 - > IEA: ideally, try to move to an industry classification based on ISIC
 - > ...and move from territorial to resident principle

Potential for improvements and collaboration

- Improved collaboration between research projects and official institutes can help
 - > Eurostat experience
 - Used EXIOPOL and WIOD staff and methods to create their official EU27 EE SUT
- > Quite some countries create their own EE SUT/IOT
- > Why not form a (in)formal collaborative working group on this
 - > With NSI and research representatives
 - > Akin the OECD WG on Material Flow Analysis
 - Various 'hosts' thinkeable (UNCEEA & London Group, UNEP, OECD, or a combination of these)
 - > CREEA can offer some funds to support this.

THANKS FOR YOUR ATTENTION!

Some issues about data availability

- Eurostat works with
 - > IPTS and Konstantz on gap filling ESA95 SUT
 - > TNO, RUG, NTNU, CML on creating an EE SUT
- > For 16 out of 27 EU countries (75% GDP) an 'Excellent data set'
 - > 3-4 countries with valuation layers transmitted to Eurostat
 - > 12 other countries that give voluntary information, but many do not want to have this published!!!!!
- > Even in our Eurostat project we could not work with these tables
- > We will publish
 - Aggregated EU27 table constructed by separating Uimp, non EU and Uimp, EU, rebalancing intra EU trade
 - > With extensions, and several analyses
- In a way weird WIOD, EXIOPOL are forced to redo this work with less information.....hope with time this will improve