

Harmonizing the National Footprint Accounts with the System of Integrated Environmental and Economic Accounting

> 5th Meeting of the UNCEEA June 23-25, New York

Pablo Munoz and Brad Ewing

- Part I provides a background of the National Footprint Accounts (NFA), related research questions, and scope.
- Part II sets out Ecological Footprint (EF) accounting tool in combination with the System of National Account (SNA), and identifies differences, compatibilities, advantages and disadvantages of the potential harmonization.
- Part III: Final Remarks

Part I: EF Background

Part I provides a background of the National Footprint Accounts (NFA), related research questions, and scope.

Ecological Footprint

Research question

How much of the biological capacity of the planet is demanded by the residents of a nation (state, city, etc.) ?

How much is available?

EF accounting tool

Part I: Background

To answer this question, the Ecological Footprint measures the amount of biologically productive land and water area a nation uses to produce the resources it consumes and to absorb the waste it generates with today's technology and resource management practices.

Components of the EF

Land Type	Provision/Consumption of
Cropland	Plant-based food and fiber products
Grazing land	Animal-based food and other animal products
Fishing grounds (marine and inland) areas	Fish-based food products
Forest areas	Timber and other forest products
Carbon-uptake land	Anthropogenic CO ₂ emissions
Built-up areas	Physical space for shelter and other infrastructure

The Ecological Footprint is a flows indicator, though it is measured in terms of the bioproductive land areas needed to generate such flows (expressed in the unit of global hectares - gha).

Input variable: flow of resource used by humans

Harmonizing NFA with SEEA means harmonizing P used in calculating the Footprint with P defined in SEEA. From FLOW to AREA:

- Y_N is used to convert the consumption of a resource flow into the correspondent amount of area locally required to produce that flow
- YF is used to scale national to world average productivity for a given land use type
- EQF is used to arrive at gha.

Scope of Ecological Footprint

- The Ecological Footprint is an indicator of human demand for ecological goods and services linked directly to ecological primary production.
- The EF addresses very specific aspects of the economy— (living) environment relationship, and should not be taken as a stand-alone overall sustainability indicator.
- It should be used in the context of a broader set of indicators that provide a more complete picture of sustainability.

Part II: Methodology

Ecological Footprint accounting tool in combination with the System of Integrated Environmental and Economic Accounting: differences, compatibilities, advantages and disadvantages of the potential merge.

				Intermediate Demand				Final Demand		Totola			
				(T)		(111)		(17)	(177)	Households	Exports	Totals	
National Economy	onetary Input-Output Table	Agriculture Animal production Forestry Fishing Manufacturing Services	(I) (I) (III) (IV) (V) (VI)				z			y	e	x	
		Imports	(m)				m			m ^{hh}	e ^t	m ^t	
	Μ	Value Added	(V)				v					v ^t	
		Total Output	(X)				x					x ^t	
ivironment	Natural Resources	Crops (tonnes) Grazing (tonnes) Forest (m3) Fishing (tonnes)	(CR) (GR) (FR) (FS)	P ^{CR,I} 0 0	0 P ^{CR,I} 0 0	0 0 P ^{FR,III} 0	0 0 0 P ^{FS,V}	0 0 0 0	0 0 0 0	P ^{CR,hh} P ^{CR,hh} P ^{FR,hh} P ^{FS,hh}		$\frac{P^{CR,t}}{P^{CR,t}}$ $\frac{P^{FR,t}}{P^{FS,t}}$	
ational En	Residua Is	CO2	(CO)	e ^{CO,I}	e ^{CO,II}	e ^{CO,III}	e ^{CO,IV}	e ^{CO,V}	e ^{CO,VI}	e ^{CO,HH}		e ^{CO,t}	
N	Land Cover	Built-up land	(BL)	a ^{BL,I}	a ^{BL,II}	a ^{BL,III}	a ^{BL,IV}	a ^{BL,V}	a ^{BL,VI}	a ^{BL,HH}		a ^{BL,t}	$EF = \frac{P}{P} \cdot YF \cdot EOF$
oduction	int (EFp)	Cropland Grazing land Forest Fishing ground	(CR) (GR) (FR) (FS)	EFp ^{CRL} 0 0	BEFp ^{GR,IV} 0 0	0 EFp ^{FR,III} 0	0 0 EFp ^{FS,V}	0 0 0	0 0 0 0	EFp ^{CR,hh} EFp ^{CR,hh} EFp ^{FR,hh} EFp ^{FS,hh}		EFp ^{CR,t} EFp ^{CR,t} EFp ^{FR,t} EFp ^{FS,t}	Y _N
National EF of pro	Production Footpri	Ecological services accounting - CO2.	(ES)	EFp ^{ES,I}	EFp ^{ES,II}	EFp ^{ES,III}	EFp ^{ES,IV}	EFp ^{ES,V}	EFp ^{ES,VI}	EFp ^{CO,HH}		EFp ^{CO,t}	
		Built-up land	(BL)	EFp ^{BL,I}	EFp ^{BL,II}	EFp ^{BL,III}	EFp ^{BL,IV}	EFp ^{BL,V}	EFp ^{BL,VI}	EFp ^{BL,HH}		EFp ^{BL,t}	
		Total Production Footprint	(EFp)	EFp ^{.I}	EFp ^{.II}	EFp ^{.III}	EFp ^{.IV}	EFp ^{.V}	EFp ^{.IV}	EFp ^{.hh}		EFp ^{.t}	
		Rest of the wor	ld Enviro	nment: N	latural R	esources	s. Residua	ls and B	iocapaci	tv.			

Differences between EF and SEEA

- EFc relies on a consumption-based approach, while SEEA and the production footprint rely on a production-based approach.
- A consumption approach implies the necessity of a modeling technique for exports and imports, i.e. trade.
- EF consumption = EF production +

Biocapacity embodied Imports (EF imp.) -Biocapacity embodied Exports (EF exp.)

Differences between EF and SEEA

Currently used in the National Footprint Accounts (NFA): Life Cycle Assessment (LCA)

- Advantage: Detailed import and export flows of goods
 - 625 commodities measured for embodied import / export of carbon Footprint.
 - 413 crops measured for embodied import / export of cropland Footprint.
 - 156 livestock products measured for embodied import / export of grazing land Footprint.
 - 117 fish products measured for embodied import / export of fishing grounds Footprint.
 - 33 forest products measured for embodied import / export of forest land Footprint.
- Disadvantage: Apparent consumption.

Input-Output Analysis based on the UN's System of National Accounts (SNA)

- Comparability of results due to the standardized national accounting.
- Input-Output Analysis (IOA) lies in consistent accounting of all upstream life-cycle impacts, including services – currently omitted in the NFA.
 - There is sufficient data on consumer and other final demand expenditure.

Part II: Methodology

 In a environmental extended MRIO model based on the SNA data, it would possible to calculate EF intensities for all imports, considering different technologies and techniques of production.

Source: Wiedmann, 2009.

Compatibilities

- We consider direct biological materials that enter to the economic system, excluding unused biological material flows.
- Boundaries: the borderline between the nature and the economy is defined by the harvest of the finished crops, considering thus the agriculture sector as a part of the environment.

NFA: Data Sources and Classifications

Data Sources	Description	Bridge tables Between NFA and SNA
FAOSTAT - FAO ProdSTAT - FAO ForesSTAT - FAO FishSTAT	 - 164 crop products, - 41 livestock products, - 33 forest products and - 1439 fish products expressed in tonnes produced or harvested per year. 	CPC v2
International Energy Agency (IEA)	-45 products and categories expressed in tonnes of carbon dioxide emissions per year.	ISIC
UN COMTRADE	-625 commodities	SITC
FAO LCCS	Built-up land types	????

Part III: Final Remarks

Final Remarks

- One of the challenges at combining NFA and SNA is the estimate of the biocapacity embodied in imports.
- Harmonizing the National Footprint Accounts with the SEEA will enable the Ecological Footprint and biocapacity indicators to follow internationally agreed upon agreed practices.
- Ecological Footprint within an input-output model based on SNA provides useful information on the economyenvironment interactions that are needed at various stages of the 'policy cycle'.
- Resource Constraints

How much of Biocapacity is available?

Biocapacity = Area * Yield Factor * Equivalence Factor

eesa

