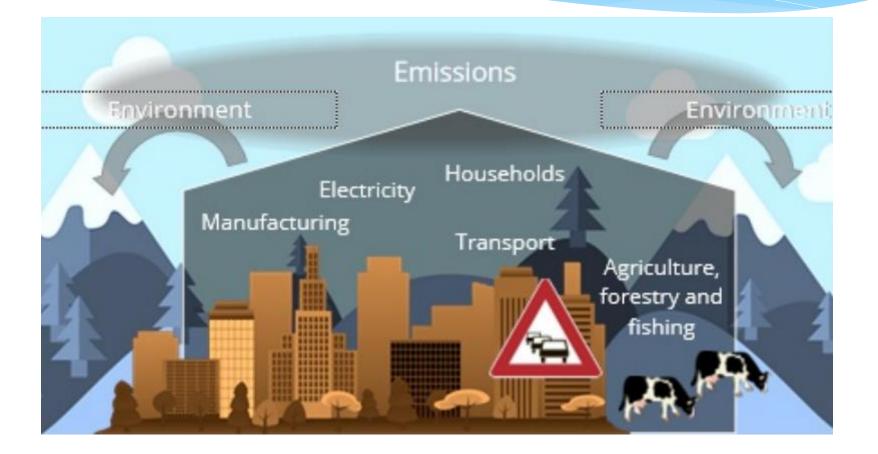
Introduction to air emission accounts


Sokol Vako

United Nations Statistical Institute for Asia and the Pacific

12 April 2023

Air emission account: overview

Air emission account: what are we measuring and how

Emissions of greenhouse gases:

- Carbon dioxide (CO₂)
- Nitrous oxide (N₂O)
- Methane (CH₄)
- Hydrofluorocarbons (HFCs)
- Perfluorocarbons (PFCs)
- Nitrogen trifluoride (NF₃)
- Sulphur hexafluoride (SF₆)

Air pollutants:

- Sulphur oxides (SO_x)
- Carbon monoxide (CO)
- Nitrogen oxides (NO_x)
- Ammonia (NH₃)
- Non-methane volatile organic compounds (NMVOCs)
- Coarse particulate matter (PM₁₀ PM_{2,5})

Emission = Activity Data * Emission Factor

What is in and what is out?

Include

Flows of air emissions from the economy into the environment, such as:

- All emissions from combustion of fuels including biomass when it is use as fuel (e.g. wood > heating)
- Flaring and venting of e.g. natural gases
- Emissions from livestock
- Emissions from manure collected and spread on agricultural land (dissipative use)
- · Emissions from landfills and waste incineration
- Leakages from accumulations

 (durable goods like refrigerators, landfills, etc.) should be recorded as they occur and attributed to the owner of the goods at the time of the leakage
- All emissions from conversion processes

Exclude

Flows of air emissions within the environment, or within the economy such as:

- Transboundary flows of air emissions
- Capture of gases by the environment, for example, carbon captured in forests and soil
- Emissions such as unintended forest and grassland fires
- Secondary emissions results from processes in the environment
- Gaseous and particulate substances generated through economy activity that are captured for use in other production processes (e.g. methane captured in a landfill to generate electricity)

Air emission account: a sample

Air emissions account (tonnes)

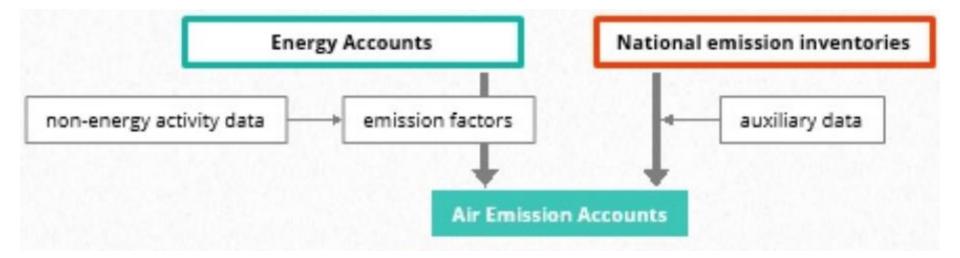
				Generation of	emissions				Accumulation	
	Industries—by ISIC			Households						
	Agriculture	Mining	Manufactur- ing	Transport					Emissions from	
	ISIC A	ISIC B	ISIC C	ISIC H	Other	Transport	Heating	Other	landfill	emissions
Type of substance										
Carbon dioxide	10 610.3	2 602.2	41 434.4	27 957.0	82 402.4	18 920.5	17 542.2	1 949.1	701.6	204 119.6
Methane	492.0	34.1	15.8	0.8	21.9	2.4	15.5	1.7	222.0	806.3
Dinitrogen oxide	23.7		3.5	0.8	2.6	1.0	0.2	0.1	0.1	32.0
Nitrous oxides	69.4	6.0	37.9	259.5	89.0	38.0	12.1	1.3	0.3	513.6
Hydrofluorocarbons			0.3		0.4					0.7
Perfluorocarbons										
Sulphur hexafluoride										
Carbon monoxide	41.0	2.5	123.8	46.2	66.2	329.1	51.2	5.7	1.1	666.9
Non-methane volatile organic compounds	5.2	6.5	40.0	16.4	27.2	34.5	29.4	3.2	0.9	163.3
Sulphur dioxide	2.7	0.4	28.0	62.4	8.1	0.4	0.4	0.1	0.0	102.5
Ammonia	107.9		1.7	0.2	0.9	2.3	11.4	1.2	0.2	125.9
Heavy metals										
Persistent organic pollutants										
Particulates (including PM10 and dust)	7.0	0.1	8.5	9.3	4,4	6.0	2.8	0.5	0.0	38.

Supply table for air emissions

Air emission account: relationship with inventory

Inventories	Accounts
Territorial principle	Residence principle
Emissions are assigned to	Emissions are assigned to
the country where the	the country where the company
emission takes place.	causing the emission is based.
Emissions are assigned to	Emissions are classified by
technical processes	economic activity
(e.g. combustion in power plants,	(using the classification, as used in the
solvent use).	system of national accounts).
Emissions from international shipping	Emissions from international shipping
and aviation are assigned to the	and aviation are assigned to the
countries where the associated fuel is	countries where the airline/shipping
purchased regardless of where the	company is based, regardless of where
purchasing company is based.	the emission takes place.

From air emissions to inventories


Table 5.1

Bridge table for CO₂ emissions - UNFCCC method and the green national accounts

		1990	1995	2000	2005	2013	2014
		million tonnes					
1	Total emissions: UNFCCC method	54.2	62.1	55.0	52.2	42.2	38.0
2	CO ₂ from biomass used as fuel	4.6	5.6	6.8	10.7	15.0	14.9
3	Total emissions abroad (international transport)	9.4	11.4	19.6	34.4	34.0	33.0
	Of which: ships:	9.2	10.9	19.1	32.3	30.9	30.0
	aircrafts:	0.3	0.4	0.5	1.6	1.8	2.0
	vehicles:	0.0	0.0	0.0	0.5	1.3	1.0
4	Other differences in emissions from transport and cross-border trade	2.5	1.8	2.0	0.8	0.9	0.7
5 (=1+2+3+4)	Total emissions from Danish economic activities, incl. biomass	70.7	81.0	83.4	98.1	92.0	86.6
6` ´	Total emissions from Danish economic activities, excl. biomass	66.2	75.3	76.5	87.4	77.0	71.7

Air emission account: how do we compile

Some indicators that rely on the Air Emissions Account

- Total GHG emissions from the national economy
- Direct GHG emissions from households
- Total GHG emissions from production activities
- GHG emission intensity of production activities
- CO₂ emissions from fuel combustion attributable to the national economy
- Total CO₂ intensity of energy used in production activities of the national economy
- Carbon footprint

Total GHG Emission from production activities

- * Linking economic activities and GHGs
- * Often tax/subsidies are sectoral: can be disaggregated by ISIC

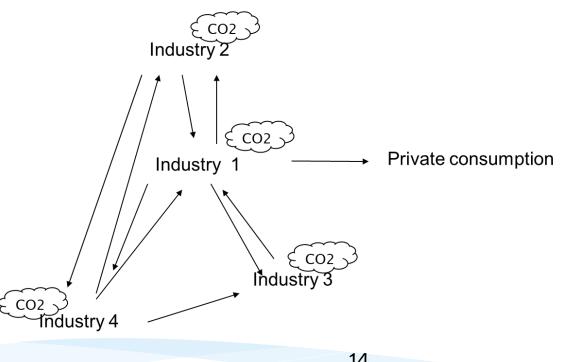
	Carbon dioxide (CO ₂)	GWP for CO2=1			
+	Methane (CH ₄)	* GWP for CH ₄			
+	Nitrous oxide (N ₂ O)	* GWP for N_2O			
+	Perfluorocarbons (PFCs)	* GWP for PFCs			
+	Hydrofluorocarbons (HFCs)	* GWP for HFCs			
+	Sulphur hexafluoride (SF ₆)	* GWP for SF ₆			
+	Nitrogen trifluoride (NF ₃)	* GWP for NF_3			
Sum = Total GHG emissions					

GHG intensity of production activities

- Need air emission accounts and national accounts
- Useful to disaggregate by different ISIC sectors

GHG emission	GHG emissions of all industries (in kt CO ₂)
intensity =	GDP
(in kt/currency)	(in currency)

Let's practice!


- * We will have two-part exercise
- * First is to compile an air emission account (focusing on GHGs)
- * We have as the starting point the energy account
 - * An advantage here is that we don't have to reassign the energy use for transportation
- * We also have some additional information on other flows (more information in the word document and excel).
- * After completing the air emission account, in the second part we will come back to the indicators (some of them).
- * And if time permit/there is interest—some details about EE-IOTs (with thanks to Ole Pederson of Statistics Denmark)

- For analytical purpuses it is useful to link the information from the SEEA physical flow accounts with the input-output tables measured in monetary units (hybrid tables)
- Environmentally extended input-output tables (EE-IOT)
- This facilitates insight into the drivers of the environmental pressures and the indirect effects (footprints) of various economic activities

Example: What are the air emissions throughout the economy resulting from private consumption, exports, etc.?

			Private		
		Manu-	consump-	Total	
	Agriculture	facturing	tion	Output	_
Agriculture	1	9	10	20	
Manufacturing	8	2	13	23	
Value added	11	12			
Total input	20	23			Д

Two equations: 1 + 9 + 10 = 208 + 2 + 13 = 23

Using symbols:

		Private			
		Manu-	consump-	Total	
	Agriculture	facturing	tion	Output	
Agriculture	B11	B12	Y1	X1	
Manufacturing	B21	B22	Y2	X2	
Value added	V1	V2			
Total input	X1	X2			

Two equations: $B_{11} + B_{12} + Y_1 = X_1$ $B_{21} + B_{22} + Y_2 = X_2$

		Private				
		Manu-	consump-	Total		
	Agriculture	facturing	tion	Output		
Agriculture	B11	B12	Y1	X1		
Manufacturing	B21	B22	Y2	X2		
Value added	V1	V2				
Total input	X1	X2				

Delivert

Two equations: $B_{11} + B_{12} + Y_1 = X_1$ $B_{21} + B_{22} + Y_2 = X_2$

equal to:

$$\begin{array}{l} (B_{11}/X_1)^*X_1 + (B_{12}/X_2)^*X_2 + Y_1 = X_1 \\ (B_{21}/X_1)^*X_1 + (B_{22}/X_2)^*X_2 + Y_2 = X_2 \end{array}$$

equal to:

Where A_{ij} are the input-output coefficents B_{ij}/X_j

$$A_{11} X_1 + A_{12} X_2 + Y_1 = X_1$$

$$A_{21} X_1 + A_{22} X_2 + Y_2 = X_2$$

using matrix notation: AX + Y = X

A11
 A12

$$X1$$
 $Y1$
 $X1$

 A21
 A22
 $X2$
 $Y2$
 $X2$

AX + Y = X(Input-output coefficients * output) plus final use = output

X - AX = Y (I - A)X = Y $X = (I - A)^{-1} \cdot Y$ which is the IO-model

It calculates the total output, X, needed for a certain final use, Y (e.g. private consumption) by multiplying the Leontieff inverse (I-A)⁻¹ by the final use.

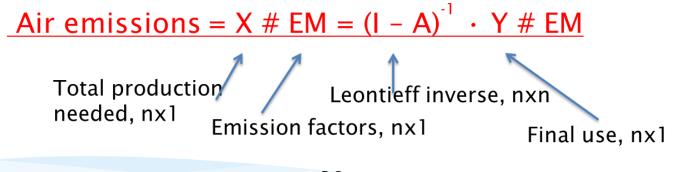
It takes all deliveries between industries into account

Once the output X needed for a certain final use has been estimated it is possible to estimate employment, energy use, water use, air emissions etc.

For instance, from the emissions accounts we first estimate emissions intensities, i.e. how much air emissions is on average generated in industries:

Emission intensity, e_i , for industry *i* is total emission E_i divided by output X_i : $|_{e1}|$

19


• $e_i = E_i / X_i$ matrix notation

EM

 From the IO-model and the emissions coefficients we estimate the air emissions corresponding to a certain final use.

Total air emissions from production in industries needed to satisfy the final demand Y:

