Scenario analysis pilot in China Ecological compensation standards for the Xijiang River basin in Guangxi

Research Center for Eco-Environmental Sciences, CAS

Yan Zhang, Zhiyun Ouyang

Beijing 2019.11

Background
Research Question
Methodology
Preliminary Results
Next Work

Background

Research Question
 Methodology
 Preliminary Results
 Next Work

What Is Ecosystem Service?

Humans always depend on nature for a wide range of environmental assets like clean water, nutrient cycling and soil formation.

Ecological Protection Practices

Guangxi has invested large amounts of manpower, material and financial resources to protect and restore the ecological environment.

Towards harmony human-nature coexistence

Resulting in huge opportunity costs for social and economic development.

Ecological Compensation Policies

Guangxi has carried out ecological compensation practices in many fields, including ecological compensation for:

- ecological benefits of forests;
- control of soil erosion and rocky desertification;
- protection and restoration of water environment;
- stablishment of ecological function conservation areas.

>Background

Research Question

Methodology
Preliminary Results
Next Work

Why We Do Scenario Analysis

By performing scenario analysis of ecological compensation, we aimed to:

- valuate the impacts of different development strategies on ecological compensation standards;
- improve the equitability of the distribution of the costs and benefits of conservation between beneficiaries and suppliers of ecosystem services;
- Ink water regulation service to the benefits;
- inform the sustainability of trans-provincial watershed management.

Background Research Question Methodology

Preliminary Results
Next Work

Location of Xijiang River Basin

- upper reaches of the Pearl River Basin
- the main stream of the Pearl River
- a drainage area of 355,000 km², of which 204,900 km² is in Guangxi Zhuang Autonomous Region, accounting for 57.7% of the entire Xijiang River Basin

Guangxi Zhuang Autonomous Region Xijiang Basin

Scenarios include:

Business As Usual
 Ecological Protection Priority
 Agricultural Development Priority
 Economic Development Priority
 Integrated Development

Ecosystem services including:

➤Water retention

- ➤Flood mitigation
- ➤Carbon storage and sequestration
- ➤Sediment retention
- Biodiversity conservation

Models:

Cellular Automate - Markov
 Empirical ecosystem service (ES) models, InVEST, SWAT

Land Cover Scenarios

Business As Usual

The historical trend of land cover changes from 2000 to 2015 is assumed to continue over the next 15 years (2015-2030).

> Integrated Development

Agricultural Development Priority

This scenario focuses on the protection of cropland which contributes greatly to local agricultural yields. Under this scenario, the declining trend of cropland areas will be mitigated by decreasing the rate of cropland conversion to other land cover types.

Ecological Protection Priority

This scenario focuses on the protection and restoration of ecological lands including forest, grassland and wetland. Under this scenario, the areas of ecological lands will be increased based on the historical trend of land cover changes.

Economic Development Priority

This scenario focuses on economic development. Under this scenario, the area of built-up lands will be expanded by increasing the conversion rates of cropland and forest to built-up lands.

Land Cover Simulation

Cellular Automate - Markov Chain

Following a procedure of decision-making exercise of multiple criteria evaluation

Key drivers

Empirical Models

Ecosystem service	Equation
Water Retention	$WR_i = \sum_{m=1}^{12} (P_{i,m} - R_{i,m} - AET_{i,m}) \times 10^{-3} \times A$
Flood Mitigation	$FM = FM_{vegetation} + FM_{lake} + FM_{reservoir}$
Soil Retention	$SR_i = R_i \times K_i \times LS_i \times (1 - C_i)$
Carbon Sequestration	$CS_i = (\sum_{i=1}^n BCS_{i,t2} - \sum_{i=1}^n BCS_{i,t1}) / (t_2 - t_1)$
Key paramet Scien	ICE Contents - News - Careers - Journals -
WR, water retered evapotranspirat	
 FM, flood mitiga (m³); FM_{lake}, the of reservoirs (m 	REPORT Improvements in ecosystem services from investments

- SR, the soil rete erodibility facto
- ACS, the avera

in

•

i, pixel i; A, the

in natural capital

Zhiyun Ouyang^{1,*}, Hua Zheng¹, Yi Xiao¹, Stephen Polasky², Jianguo Liu³, Weihua Xu¹, Qiao Wang⁴, Lu Zhang¹, Yang Xiao¹, E... + See all authors and affiliations

Science 17 Jun 2016: Vol. 352, Issue 6292, pp. 1455-1459 DOI: 10.1126/science.aaf2295

Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST)

Three modules including:

- SWY for Water Retention
- SWY for Water Retention
- SDR for Sediment Retention
- CSS for Carbon sequestration

Realizing the values of natural capital for inclusive, sustainable development: Informing China's new ecological development strategy

Hua Zheng^{a,b}, Lijuan Wang^{a,b}, Wenjia Peng^{a,b}, Cuiping Zhang^c, Cong Li^d, Brian E. Robinson^e, Xiaochen Wu^c, Lingqiao Kong^{a,b}, Ruonan Li^{a,b}, Yi Xiao^{a,b}, Weihua Xu^{a,b}, Zhiyun Ouyang^{a,b,1}, and Gretchen C. Daily^{f,g,h,1}

*State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; ^bCollege of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China; ^cDivision of Ecological Monitoring, Hainan Academy of Environmental Sciences, 570206 Halkou, China; ^cSchool of Economics and Finance, Xian Jiaotong University, 710061 Xi'an, China; ^cDepartment of Geography, McGill University, Montreal, QC H3A 089, Canada; ^bDepartment of Biology, Stanford University, Stanford, CA 94305; ^{sc}Center for Conservation Biology, Stanford University, Stanford, CA 94305; and ^cNatural Captal Project, Stanford University, Stanford, CA 94305; ^{sc}Center for

Contributed by Gretchen C. Daily, February 21, 2019 (sent for review November 19, 2018; reviewed by Nick M. Haddad and Jun Yang)

A major challenge in transforming development to inclusive, sustainable pathways is the pervasive and persistent trade-off between provisioning services (e.g., agricultural production) on the one hand and regulating services (e.g., water purification, flood control) and biodiversity conservation on the other. We report on an application of China's new Ecological Development Strategy, now being formally tested and refined for subsequent scaling nationwide, which quantify and manage trade-offs between immediate, local human needs and future, regional requirements (8–11). Stemming from underlying biophysical processes, some trade-offs are innate, such as between carbon sequestration and water provision in some grassland and shrubland regions (12, 13). However, it has been repeatedly suggested that some trade-offs (e.g., crop product provision and nutrient retention) can be lessened or even neutralized

Biophysical model - InVEST

Ecosystem service	Major equation	Main outputs
Water Retention	$WR_i = \sum_{m=1}^{12} (P_{i,m} - QF_{i,m} - AET_{i,m}) \times 10^{-3} \times A$	Indices including: Quick flow Local recharge
Flood Mitigation	$FM_i = \sum_{m=1}^{12} (P_{i,m} - QF_{i,m}) \times 10^{-3} \times A$	Base flow
Sediment Retention	$SR_i = R_i \times K_i \times LS_i \times (1 - C_i)$	Indices including: Sediment retention Sediment export
Carbon Sequestration	$CS_i = (\sum_{i=1}^n BCS_{i,t2} - \sum_{i=1}^n BCS_{i,t1}) / (t_2 - t_1)$	Indices including: Carbon storage and Its differences

Key parameters

- WR, water retention capacity (m³); P, precipitation (mm); QF, quick flow (mm); AET, actual evapotranspiration (mm); A, area of each pixel (m).
- > FM, flood mitigation capacity of the entire region (m^3) .
- SR, the soil retention capacity (t ha⁻¹); R, the rainfall erosivity factor (MJ mm ha⁻¹ h⁻¹ yr⁻¹); K, the soil erodibility factor (t ha h ha⁻¹ MJ⁻¹ mm⁻¹); LS, the topographic factor; C, the vegetation cover factor.
- > ACS, the average annual carbon sink (Tg C/yr); BCS, the biomass carbon storage.
- > i, pixel i; A, the area of each pixel (m²).

Soil & Water Assessment Tool (SWAT)

- For evaluating the impacts of development and land management practices on the watershed water balance.
- Ecosystem services including:
- Spatial distribution of water yield
- Sediment delivery

Biophysical model - SWAT

Ecosystem service	Major equation	Main outputs	
Water yield	$SW_t = SW_0 + \sum_{n=1}^t (P_n - R_n - W_n - E_n - Q_n)$	Daily changes In inflow and outflow	2
Water quantity		Daily changes In water quantity metrics like TN, TP	TP
Sediment regulation	$SED' = 11.8(Q_{surf}q_{peak}area_{hru})^{0.56}K_{USLE}C_{USLE}P_{USLE}LS_{USLE}CF$	soil erosion and sediment yield from each HRUs	•

Key parameters

- SW₀ and SW_{tn} are the initial and total soil water content on day n (mm); P_n is the precipitation (mm); R_n is the surface runoff on day n (mm); W_n is the amount of percolation and bypass flow exiting the soil profile bottom on day n (mm); E_n is the evapotranspiration on day n (mm); Q_n is the amount of return flow on day n (mm).
- SED' is the sediment yield (metric tons); Q_{surf} is the surface runoff (mm/ha); q_{surf} is the peak runoff (m3/s); area_{hru} is the area of hydrologic response unit (ha); K_{USLE} is the soil erodibility factor (0.013 metric ton m2 ha/(m3 metric ton cm); C_{USLE} is the cover and management factor; P_{USLE} is the support practice factor; LS_{USLE} is the topographic factor; C_{FRG} is the coarse fragment factor)

Linkage of SWAT with empirical and InVEST models for estimating the biophysical supply of ecosystem services.

Biodiversity Conservation

Quantification of the provision of threatened species habitats for biodiversity conservation.

Strengthening protected areas for biodiversity and ecosystem services in China

Weihua Xu^a, Yi Xiao^a, Jingjing Zhang^a, Wu Yang^b, Lu Zhang^a, Vanessa Hull^{c,1}, Zhi Wang^d, Hua Zheng^a, Jianguo Liu^c, Stephen Polasky^e, Ling Jiang^a, Yang Xiao^a, Xuewei Shi^a, Enming Rao^a, Fei Lu^a, Xiaoke Wang^a, Gretchen C. Daily^{1,2}, and Zhiyun Ouyanga,2

2state Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Center for Systems Integration and Sustainability. Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823-5243; "Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China; *Department of Applied Economics and Natural Capital Project, Institute on the Environment, University of Minnesota, St. Paul, MN 55108; and Department of Biology, Center for Conservation Biology, Natural Capital Project, and Woods Institute for the Environment, Stanford University, Stanford, CA 94305

Contributed by Gretchen C. Daily, December 15, 2016 (sent for review October 28, 2016; reviewed by Nick M. Haddad and Guangchun Lei)

Recent expansion of the scale of human activities poses severe threats to Earth's life-support systems. Increasingly, protected areas (PAs) are expected to serve dual goals: protect biodiversity and secure ecosystem services. We report a nationwide assessment for China, quantifying the provision of threatened species habitat and four key regulating services-water retention, soil retention, sandstorm prevention, and carbon sequestration—in nature reserves

Although the definition of PAs by the International Union for Conservation of Nature (IUCN) includes explicit reference to conserving "nature with associated ecosystem services" (6), biodiversity has historically been the dominant goal for PA design, implementation, and management (7). There is now a major shift underway toward broadening the goals of PAs from a dominant focus on biodiversity to one that also encompasses the provision of

Background Research Question Methodology

Preliminary Results Next Work

Historical Land Cover Changes

Export and import characteristics

Land cover areas (km²)

Land Cover	2000		2015	
	Xijang basin	Xijiang basin (Guangxi)	Xijang basin	Xijiang basin (Guangxi)
Forest	286925	135039	287782	135407
Grassland	28019	4704	27607	4022
Cropland	104237	54792	99153	54024
Wetland	10144	3181	10209	3386
Builtup	12719	4383	16679	4767
Bareland	814	16	1428	509

Simulation of Land Cover

Difference between simulated and original land cover areas (km²)

Image similarity:

Chi-square = 3.29×10^{6} df = 36 P-level = 0.000 Cramer's V = 0.8289 Kappa = 0.9465

Prediction of Future Land Cover

Biophysical ES Supply

Relatively higher water retention and flood mitigation services for the EPP scenario as indicated by the traditional ecosystem service models

Biophysical ES Supply - InVEST

As indicated by the InVEST model outputs, relatively higher biophysical supply of ecosystem services were observed under the EPP scenario.

Biophysical ES Supply - SWAT

Biophysical ES Supply - SWAT

Sensitive parameters used for estimating hydrological processes including:

Name	Description
rCN2	Curve number
vALPHA_BF	Baseflow alpha factor
vGW_DELAY	Delay time based on aquifer recharge
vGWQMN	Water depth in the shallow aquifer required for return flow to occur
vGW_REVAP	Groundwater revap coefficient
vREVAPMN	Water depth in the shallow aquifer for revap or percolation to the deep aquifer to occur.
vESCO	Soil evaporation compensation factor
rHRU_SLP	Average slope steppness
rOV_N	Manning's n value for overland flow

Hydrological balance for the whole basin

Biophysical ES Supply - SWAT

Water yield capacity without management effects

Xijiang basin (m³/s)

Guangxi (m³/s)

Biodiversity Conservation

Biodiversity Conservation

Mean importance index for biodiversity conservation under different scenarios

Background Research Question Methodology Preliminary Results Next Work

- Estimation and refining of the spatial distribution of biophysical metrics including water yield, sediment delivery based on SWAT model;
- Valuation of ecosystem services under different scenarios;
- Measurement of ecological compensation standards between the upstream and downstream regions.

Thanks for your attention!